Contents

1 **Introduction** 2

2 **System Overview** 2

3 **Connecting to Nord III** 2
 3.1 Password Management 3
 3.2 Transferring files 3
 3.3 Active Archive Management 5

4 **File Systems** 5
 4.1 Root Filesystem 6
 4.2 GPFS Filesystem 6
 4.3 Local Hard Drive 6
 4.4 Quotas 7

5 **Running Jobs** 7
 5.1 LSF Commands 7
 5.2 Job directives 7
 5.3 MPI particulars 9
 5.4 Jobscript examples 10
 5.5 Queues 12

6 **Software Environment** 12
 6.1 C Compilers 12
 6.2 FORTRAN Compilers 13
 6.3 Modules Environment 14
 6.4 BSC Commands 15
 6.5 TotalView 15
 6.6 Tracing jobs with BSC Tools 16

7 **Getting help** 17
 7.1 Frequently Asked Questions (FAQ) 17

8 **Appendices** 17
 8.1 SSH 17
 8.2 Transferring files 19
 8.3 Using X11 20
 8.4 Using the DDT debugger 20
1 Introduction

This user’s guide for the Nord III cluster is intended to provide the minimum amount of information needed by a new user of this system. As such, it assumes that the user is familiar with many of the standard features of supercomputing as the Unix operating system.

Here you can find most of the information you need to use our computing resources and the technical documentation about the machine. Please read carefully this document and if any doubt arises do not hesitate to contact us (Getting help (chapter 7)).

2 System Overview

Nord III is a supercomputer based on Intel SandyBridge processors, iDataPlex Compute Racks, a Linux Operating System and an Infiniband interconnection.

The current Peak Performance is 28 Gigaops. The total number of processors is 1,344 Intel SandyBridge-EP E5-2670 cores at 2.6 GHz (84 compute nodes) with 10.5 TB of main memory. See below a summary of the system:

- 1 iDataPlex compute racks. Each one composed of:
 - 84 IBM dx360 M4 compute nodes
 - 4 Mellanox 36-port Managed FDR10 IB Switches
 - 2 BNT RackSwitch G8052F (Management Network)
 - 2 BNT RackSwitch G8052F (GPFS Network)
 - 4 Power Distribution Units

- All IBM dx360 M4 node contain:
 - 2x E5-2670 SandyBridge-EP 2.6GHz cache 20MB 8-core
 - 500GB 7200 rpm SATA II local HDD
 - 8x 16G DDR3-1600 DIMMs (8GB/core) Total RAM: 128GB/node

- 1.9 PB of GPFS disk storage

- Interconnection Networks
 - Infiniband Mellanox FDR10: High bandwidth network used by parallel applications communications (MPI)
 - Gigabit Ethernet: 10GbitEthernet network used by the GPFS Filesystem.

- Operating System: Linux - SuSe Distribution 11 SP3

3 Connecting to Nord III

The first thing you should know is your username and password. Once you have a login and its associated password you can get into the cluster through one of the following login nodes:

- nord1.bsc.es
- nord2.bsc.es
- nord3.bsc.es

You must use Secure Shell (ssh) tools to login into or transfer files into the cluster. We do not accept incoming connections from protocols like telnet, ftp, rlogin, rcp, or rsh commands. Once you have logged into the cluster you cannot make outgoing connections for security reasons.

To get more information about the supported secure shell version and how to get ssh for your system (including windows systems) see the Appendices (chapter 8). Once connected to the machine, you will be presented with a UNIX shell prompt and you will normally be in your home ($HOME) directory. If you are new to UNIX, you will need to learn the basics before doing anything useful.
3.1 Password Management

In order to change the password, you have to login to a different machine (dt01.bsc.es). This connection must be established from your local machine.

| % ssh -i username dt01.bsc.es
username@dtransfer1:~> passwd
Changing password for username.
Old Password:
New Password:
Reenter New Password:
Password changed. |

Mind that the password change takes about 10 minutes to be effective.

3.2 Transferring files

There are two ways to copy files from/to the Cluster:

- Direct scp or sftp to the login nodes
- Using a Data transfer Machine which shares all the GPFS filesystem for transferring large files

Direct copy to the login nodes.

As said before no connections are allowed from inside the cluster to the outside world, so all scp and sftp commands have to be executed from your local machines and never from the cluster. The usage examples are in the next section.

On a Windows system, most of the secure shell clients come with a tool to make secure copies or secure ftp's. There are several tools that accomplish the requirements, please refer to the Appendices (chapter 8), where you will find the most common ones and examples of use.

Data Transfer Machine

We provide special machines for file transfer (required for large amounts of data). These machines are dedicated to Data Transfer and are accessible through ssh with the same account credentials as the cluster. They are:

- dt01.bsc.es
- dt02.bsc.es

These machines share the GPFS filesystem with all other BSC HPC machines. Besides scp and sftp, they allow some other useful transfer protocols:

- scp

| localsystem$ scp localfile username@dt01.bsc.es:
username's password:
localsystem$ sftp username@dt01.bsc.es
username's password:
sftp> put localfile |

- sftp

| localsystem$ scp username@dt01.bsc.es:remotefile localdir
username's password:
localsystem$ sftp username@dt01.bsc.es
username's password:
sftp> get remotefile |
• BSCP

bbcp -V -z <USER>@dt01.bsc.es:<FILE> <DEST>
bbcp -V <ORIG> <USER>@dt01.bsc.es:<DEST>

• FTPS

gftp-text ftps://<USER>@dt01.bsc.es
get <FILE>
put <FILE>

• GRIDFTP (only accessible from dt02.bsc.es)

Data Transfer on the PRACE Network

PRACE users can use the 10Gbps PRACE Network for moving large data among PRACE sites. The selected data transfer tool is [Globus/GridFTP](http://www.globus.org/toolkit/docs/latest-stable/gridftp/) which is available on dt02.bsc.es. In order to use it, a PRACE user must get access to dt02.bsc.es:

% ssh -l pr1eXXXX dt02.bsc.es

Load the PRACE environment with ‘module’ tool:

% module load prace globus

Create a proxy certificate using ‘grid-proxy-init’:

% grid-proxy-init
Your identity: /DC=es/DC=irisgrid/O=bsc-cns/CN=john.fooo
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Wed Aug 7 00:37:26 2013

The command ‘globus-url-copy’ is now available for transferring large data.

globus-url-copy [-p <parallelism>] [-tcp-bs <size>] <sourceURL> <destURL>

Where:

• -p: specify the number of parallel data connections should be used (recommended value: 4)
• -tcp-bs: specify the size (in bytes) of the buffer to be used by the underlying ftp data channels (recommended value: 4MB)
• Common formats for sourceURL and destURL are:
 - file://(on a local machine only) (e.g. file:///home/pr1eXX00/pr1eXXXX/myfile)
 - gsiftp://(e.g. gsiftp://supermuc.lrz.de/home/prldXXXX/mydir/)
 - remember that any url specifying a directory must end with /

All the available PRACE GridFTP endpoints can be retrieved with the ‘prace_service’ script:

% prace_service -i -f bsc
gftp.prace.bsc.es:2811

More information is available at the [PRACE website](http://www.prace-ri.eu/Data-Transfer-with-GridFTP-Details)
3.3 Active Archive Management

Active Archive (AA) is a mid-long term storage filesystem that provides 3.7 PB of total space. You can access AA from the Data Transfer Machine (section 3.2) (dt01.bsc.es and dt02.bsc.es) under /gpfs/archive/your_group.

NOTE: There is no backup of this filesystem. The user is responsible for adequately managing the data stored in it.

To move or copy from/to AA you have to use our special commands:

- **dtcp, dtmv, dtsync, dttar**

 These commands submit a job into a special class performing the selected command. Their syntax is the same as the shell command without `dt` prefix (cp, mv, rsync, tar).

- **dtq, dtcancel**

 dtq shows all the transfer jobs that belong to you. (works like mnq)
 dtcancel works like mncancel (see below) for transfer jobs.

- **dttar:** submits a tar command to queues. Example: Taring data from /gpfs/to /gpfs/archive

  ```
  % dttar -cvf /gpfs/archive/usertest/outputs.tar ~/OUTPUTS
  ```

- **dtcp:** submits a cp command to queues. Remember to delete the data in the source filesystem once copied to AA to avoid duplicated data.

  ```
  # Example: Copying data from /gpfs to /gpfs/archive
  % dtcp -r ~/OUTPUTS /gpfs/archive/usertest/
  ```

- **dtmv:** submits a mv command to queues.

  ```
  # Example: Moving data from /gpfs to /gpfs/archive
  % dtmv ~/OUTPUTS /gpfs/archive/usertest/
  ```

  ```
  # Example: Moving data from /gpfs/archive to /gpfs
  % dtmv /gpfs/archive/usertest/OUTPUTS ~/ 
  ```

Additionally, these commands accept the following options:

- **-blocking:** Block any process from reading file at final destination until transfer completed.
- **-time:** Set up new maximum transfer time (Default is 18h).

 It is important to note that these kind of jobs can be submitted from both the ‘login’ nodes (automatic file management within a production job) and ‘dt01.bsc.es’ machine. AA is only mounted in Data Transfer Machine (section 3.2). Therefore if you wish to navigate through AA directory tree you have to login into dt01.bsc.es

4 File Systems

IMPORTANT: It is your responsibility as a user of our facilities to backup all your critical data. *We only guarantee a daily backup of user data under /gpfs/home and /gpfs/projects.*

Each user has several areas of disk space for storing files. These areas may have size or time limits, please read carefully all this section to know about the policy of usage of each of these filesystems. There are 3 different types of storage available inside a node:
• **Root filesystem**: Is the filesystem where the operating system resides

• **GPFS filesystems**: GPFS is a distributed networked filesystem which can be accessed from all the nodes and Data Transfer Machine (section 3.2)

• **Local hard drive**: Every node has an internal hard drive

4.1 Root Filesystem

The root file system, where the operating system is stored doesn't reside in the node, this is a NFS filesystem mounted from one of the servers.

As this is a remote filesystem only data from the operating system has to reside in this filesystem. It is NOT permitted the use of /tmp for temporary user data. The local hard drive can be used for this purpose as you could read in Local Hard Drive (section 4.3).

4.2 GPFS Filesystem

The IBM General Parallel File System (GPFS) is a high-performance shared-disk file system providing fast, reliable data access from all nodes of the cluster to a global filesystem. GPFS allows parallel applications simultaneous access to a set of files (even a single file) from any node that has the GPFS file system mounted while providing a high level of control over all file system operations. In addition, GPFS can read or write large blocks of data in a single I/O operation, thereby minimizing overhead.

An incremental backup will be performed daily only for /gpfs/home and /gpfs/projects (not for /gpfs/scratch).

These are the GPFS filesystems available in the machine from all nodes:

- **/apps**: Over this filesystem will reside the applications and libraries that have already been installed on the machine. Take a look at the directories to know the applications available for general use.

- **/gpfs/home**: This filesystem has the home directories of all the users, and when you log in you start in your home directory by default. Every user will have their own home directory to store own developed sources and their personal data. A default quota (section 4.4) will be enforced on all users to limit the amount of data stored there. Also, it is highly discouraged to run jobs from this filesystem. Please run your jobs on your group’s /gpfs/projects or /gpfs/scratch instead.

- **/gpfs/projects**: In addition to the home directory, there is a directory in /gpfs/projects for each group of users. For instance, the group bsc01 will have a /gpfs/projects/bsc01 directory ready to use. This space is intended to store data that needs to be shared between the users of the same group or project. A quota (section 4.4) per group will be enforced depending on the space assigned by Access Committee. It is the project’s manager responsibility to determine and coordinate the better use of this space, and how it is distributed or shared between their users.

- **/gpfs/scratch**: Each user will have a directory over /gpfs/scratch. Its intended use is to store temporary files of your jobs during their execution. A quota (section 4.4) per group will be enforced depending on the space assigned.

4.3 Local Hard Drive

Every node has a local hard drive that can be used as a local scratch space to store temporary files during executions of one of your jobs. This space is mounted over /scratch/tmp directory and pointed out by $TMPDIR environment variable. The amount of space within the /scratch filesystem is about 500 GB. All data stored in these local hard drives at the compute nodes will not be available from the login nodes. Local hard drive data are not automatically removed, so each job has to remove its data before finishing.
4.4 Quotas

The quotas are the amount of storage available for a user or a groups’ users. You can picture it as a small disk readily available to you. A default value is applied to all users and groups and cannot be outgrown.

You can inspect your quota anytime you want using the following command from inside each filesystem:

```bash
% bsc_quota
```

The command provides a readable output for the quota. Check BSC Commands (section 6.4) for more information.

If you need more disk space in this filesystem or in any other of the GPFS filesystems, the responsible for your project has to make a request for the extra space needed, specifying the requested space and the reasons why it is needed. For more information or requests you can Contact Us (chapter 7).

5 Running Jobs

LSF is the utility used at Nord III for batch processing support, so all jobs must be run through it. This document provides information for getting started with job execution at the Cluster.

5.1 LSF Commands

These are the basic commands to submit, control and check your jobs:

```bash
bsub < job_script
```

submits a “job script” passed through standard input (STDIN) to the queue system. Job directives (section 5.2) explains the available options to write a jobscript

```bash
bjobs [-w][-X][-l job_id]
```

shows all the submitted jobs.

```bash
bkill <job_id>
```

remove the job from the queue system, canceling the execution of the processes, if they were still running.

```bash
bsc_jobs
```

shows all the pending or running jobs from your group. Check BSC Commands (section 6.4) for more information.

5.2 Job directives

A job must contain a series of directives to inform the batch system about the characteristics of the job. We encourage that you read the bsub command’s manual from any of Nord’s terminals:

```bash
% man bsub
```

Here we provide a short summary of most common directives:

```bash
#BSUB -J job_name
```

Specify the name (description) of the job.
Specify the queue [section 5.5] for the job to be submitted. The debug queue is only intended for small tests, so there is a limit of 1 job per user, using up to 64 cpus (4 nodes), and one hour of wall clock limit. The queue might be reassigned by LSF internal policy, as with the sequential [section 5.5] queue.

Specify how much time the job will be allowed to run. This is a mandatory field. NOTE: take into account that you cannot specify the amount of seconds in LSF. You must set it to a value greater than the real execution time for your application and smaller than the time limits granted to the user. Notice that your job will be killed after the elapsed period.

The working directory of your job (i.e. where the job will run). If not specified, it is the current working directory at the time the job was submitted.

The name of the file to collect the stderr output of the job. You can use %J for job_id. -e option will APPEND the file, -eo will REPLACE the file.

The name of the file to collect the standard output (stdout) of the job. -o option will APPEND the file, -o o will REPLACE the file.

The number of tasks for the job. In MPI executions corresponds to the number of MPI processes and for sequential executions the number of cores.

Use the nodes exclusively. This is the default behaviour except for sequential [section 5.5] executions.

Specify maximum amount of memory necessary for each task, specified in MB. This option is used to better schedule the jobs and select the compute nodes adequate to fulfill the job’s needs. By default 1800 MB are reserved per task. Exclusive jobs will still get all available memory. You may check [this FAQ](http://www.bsc.es/user-support/faq.php#therearesomespecialrequirementforjobs.howshouldiputthem) for a more in-depth explanation. Note: For non-LowMem requests you must specify a ptile of 16.

The number of processes assigned to a node. Note that full nodes will be allocated except for sequential [section 5.5] executions. Examples:

If you want to use 4 processes per node and 4 threads:

BSUB -R "span[ptile=4]"
export OMP_NUM_THREADS=4

If your program has high memory
consumption you can reduce the number
of processes per node

BSUB -R "span[ptile=14]"
5.3 MPI particulars

There are different MPI implementations available for usage. Some of them present special requirements to be used.

OpenMPI

OpenMPI is an Open Source MPI implementation and is loaded by default on our machines. You can use it like this:

```
% module load openmpi
% mpicc / mpif90 your_files
```

Once compiled, your jobscript must invoke mpirun:

```
#!/bin/bash
#
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -eo output_%J.err
#BSUB -J openmpi_example
#BSUB -W 00:05
module load openmpi
mpirun binary.exe
```

IntelMPI

IntelMPI is an MPI implementation developed by Intel. You can use it like this:

```
% module load intel mpi
% mpicc / mpif90 your_files
```

Once compiled, your jobscript must invoke mpirun:

```
#!/bin/bash
#
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -eo output_%J.err
#BSUB -J intelmpi_example
#BSUB -W 00:05
module load intel mpi
mpirun binary.exe
```

IBM POE

IBM POE is an alternative MPI library binary compatible with IntelMPI. Use POE for executions with a large number of cores. First, in order to compile your MPI code using IBM POE:

```
% module load poe
% mpicc / mpif90 your_files
```

Once compiled, your jobscript must mention it explicitly:

```
#!/bin/bash
#
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -eo output_%J.err
#BSUB -J poe_example
#BSUB -W 00:05
#BSUB -a poe
module load poe
poe binary.exe
```
5.4 Jobscript examples

Purely sequential

```bash
#!/bin/bash
#BSUB -n 1
#BSUB -o output_%J.out
#BSUB -e output_%J.err
#BSUB -J sequential
#BSUB -W 00:05
./serial.exe
```

Sequential with OpenMP threads

```bash
#!/bin/bash
#BSUB -n 16
#BSUB -R "span[ptile=16]"
#BSUB -o output_%J.out
#BSUB -e output_%J.err
#BSUB -J sequential_OpenMP
#BSUB -x
#BSUB -W 00:05
export OMP_NUM_THREADS=16
./serial.exe
```

Parallel using MPI

```bash
#!/bin/bash
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -e output_%J.err
# In order to launch 128 processes with
# 16 processes per node:
#BSUB -R "span[ptile=16]"
#BSUB -J WRF.128-4
#BSUB -W 02:00

# You can choose the parallel environment through modules
module load intel openmpi
mpirun ./wrf.exe
```

Parallel using MPI and OpenMP threads

```bash
#!/bin/bash
# The total number of processes:
# 128 MPI processes + 2 OpenMP threads/process = 256 cores
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -e output_%J.err

######################################################
# This will allocate 8 processes per node so we have 
# 8 cores per node for the threads
# BSUB -R "span[ptile=8]"
```
Parallel using MPI and extra memory

The following example shows how to ask for 3000 MB/task instead of the default 1800 MB/task. As no `-R` options are included it will still put 16 processes on each node, so the Common (2 GB/core) nodes won’t be able to execute this job. This effectively guarantees that either MedMem (128 nodes with 4 GB/core) or HighMem (128 nodes with 8 GB/core) nodes will be used, or a mixture of both.

```bash
#!/bin/bash
# Total number of tasks
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -eo output_%J.err

# Requesting 3000 MB per task
# As no pule is specified, only Medium and High memory nodes
# are eligible for this execution (max 128 nodes, 2048 cores)
#BSUB -M 3000
#BSUB -W 01:00

module purge
module load intel openmpi

mpirun ./my_mpi.exe
```

The following example requests the same memory per task as the preceding one but it is set to be executed on any nodes. This is done by reducing the amount of tasks per node so the total memory requested by all the tasks in the same node is below the LowMem memory threshold. This would be necessary to execute jobs that need more nodes or cpus than the MedMem and HighMem nodes can provide.

```bash
#!/bin/bash
# Total number of tasks
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -eo output_%J.err

# Requesting 3000 MB per task
#BSUB -M 3000

# Only 9 task per node.
```
5.5 Queues

There are several queues present in the machines and different users may access different queues. All queues have different limits in amount of cores for the jobs and duration. You can check anytime all queues you have access to and their limits using:

```
% bsc_queues
```

Check BSC Commands (section 6.4) for more information.

Sequential executions

For any job that requires a node or less resources, the sequential queue is automatically applied. This queue is the only one that uses the same node for more than one job at a time. It also has the least priority in the machine and the number of concurrently executed sequential jobs is limited to avoid disturbing large jobs’ execution.

If you request 16 processes per node or use `-x` option, the full node will be assigned to your job. If you have memory problems, mind to specify the exclusive ag because just specifying a ptile may still share the node with other users.

6 Software Environment

All software and numerical libraries available at the cluster can be found at `/apps/`. If you need something that is not there please contact us to get it installed (see Getting Help (chapter 7)).

6.1 C Compilers

In the cluster you can find these C/C++ compilers:

```
icc /icp c - > Intel C/C++ Compilers
```

```
% man icc
% man icpc
```

```
gcc /g++ - > GNU Compilers for C/C++
```

```
% man gcc
% man g++
```

All invocations of the C or C++ compilers follow these suffix conventions for input files:

```
.C, .cc, .cpp, or .cxx -> C++ source file.
.c -> C source file
.i -> preprocessed C source file
.so -> shared object file
.o -> object file for ld command
.s -> assembler source file
```

By default, the preprocessor is run on both C and C++ source files.

These are the default sizes of the standard C/C++ datatypes on the machine
<table>
<thead>
<tr>
<th>Type</th>
<th>Length (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool (c++ only)</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
</tr>
<tr>
<td>wchar_t</td>
<td>4</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>16</td>
</tr>
</tbody>
</table>

Distributed Memory Parallelism

To compile MPI programs it is recommended to use the following handy wrappers: `mpicc`, `mpicxx` for C and C++ source code. You need to choose the Parallel environment first: `module load openmpi`/`module load impi`/`module load poe`. These wrappers will include all the necessary libraries to build MPI applications without having to specify all the details by hand.

```bash
% mpicc a.c -o a.exe
% mpicxx a.C -o a.exe
```

Shared Memory Parallelism

OpenMP directives are fully supported by the Intel C and C++ compilers. To use it, the flag `-openmp` must be added to the compile line.

```bash
% icc -openmp -o exename filename.c
% icpc -openmp -o exename filename.C
```

You can also mix MPI + OPENMP code using `-openmp` with the mpi wrappers mentioned above.

Automatic Parallelization

The Intel C and C++ compilers are able to automatically parallelize simple loop constructs, using the option “-parallel”:

```bash
% icc -parallel a.c
```

6.2 FORTRAN Compilers

In the cluster you can find these compilers:

- `ifort` -> Intel Fortran Compilers

```bash
% man ifort
```

- `gfortran` -> GNU Compilers for FORTRAN

```bash
% man gfortran
```

By default, the compilers expect all FORTRAN source files to have the extension “.f”, and all FORTRAN source files that require preprocessing to have the extension “.F”. The same applies to FORTRAN 90 source files with extensions “.f90” and “.F90”.

13
Distributed Memory Parallelism

In order to use MPI, again you can use the wrappers mpif77 or mpif90 depending on the source code type. You can always man mpif77 to see a detailed list of options to configure the wrappers, i.e. change the default compiler.

```
% mpif77 a.f -o a.exe
```

Shared Memory Parallelism

OpenMP directives are fully supported by the Intel Fortran compiler when the option "-qopenmp" is set:

```
% ifort -qopenmp
```

Automatic Parallelization

The Intel Fortran compiler will attempt to automatically parallelize simple loop constructs using the option "-parallel":

```
% ifort -parallel
```

6.3 Modules Environment

The Environment Modules package http://modules.sourceforge.net/ provides a dynamic modification of a user's environment via modulefiles. Each modulefile contains the information needed to configure the shell for an application or a compilation. Modules can be loaded and unloaded dynamically, in a clean fashion. All popular shells are supported, including bash, ksh, zsh, sh, csh, tcsh, as well as some scripting languages such as perl.

Installed software packages are divided into five categories:

- Environment: modulefiles dedicated to prepare the environment, for example, get all necessary variables to use openmpi to compile or run programs
- Tools: useful tools which can be used at any time (php, perl, . . .)
- Applications: High Performance Computers programs (GROMACS, . . .)
- Libraries: Those are tipycally loaded at a compilation time, they load into the environment the correct compiler and linker flags (FFTW, LAPACK, . . .)
- Compilers: Compiler suites available for the system (intel, gcc, . . .)

Modules tool usage

Modules can be invoked in two ways: by name alone or by name and version. Invoking them by name implies loading the default module version. This is usually the most recent version that has been tested to be stable (recommended) or the only version available.

```
% module load intel
```

Invoking by version loads the version specified of the application. As of this writing, the previous command and the following one load the same module.

```
% module load intel/2017.1
```

The most important commands for modules are these:

- `module list` shows all the loaded modules
- **module avail** shows all the modules the user is able to load
- **module purge** removes all the loaded modules
- **module load <module_name>** loads the necessary environment variables for the selected module-file (PATH, MANPATH, LD_LIBRARY_PATH...)
- **module unload <module_name>** removes all environment changes made by module load command
- **module switch <oldmodule> <newmodule>** unloads the first module (oldmodule) and loads the second module (newmodule)

You can run “module help” any time to check the command’s usage and options or check the module(1) manpage for further information.

6.4 BSC Commands

The Support team at BSC has provided some commands useful for user’s awareness and ease of use in our HPC machines. These commands are available through a special module (bsc/current) loaded at the beginning of any session. A short summary of these commands follows:

- **bsc_acct**: Displays accounting information on the project’s allocation usage.
- **bsc_jbccheck**: Returns a comprehensive description of the resources requested by a jobscript.
- **bsc_jobs**: Show a list of your submitted jobs and those from other members of your group.
- **bsc_load**: Show the performance and resources usage of all the nodes of a specific running job.
- **bsc_queues**: Show the queues the user has access to and their time/resources limits.
- **bsc_quota**: Show a comprehensible quota usage summary for all accessible filesystems.
- **bsc_micwrapper**: Automatized script to execute MPI jobs using the Intel Xeon Phi Accelerators.

You can check more information about these commands through any of the following manpages:

```
% man bsc_commands
% man bsc_jobs
% man bsc
```

6.5 TotalView

TotalView is a graphical portable powerful debugger from Rogue Wave Software designed for HPC environments. It also includes MemoryScape and ReverseEngine. It can debug one or many processes and/or threads. It is compatible with MPI, OpenMP, Intel Xeon Phi and CUDA.

Users can access to the latest version of TotalView 8.13 installed in:

```
/apps/TOTALVIEW/totalview
```

Important: Remember to access with ssh -X to the cluster and submit the jobs to x11 queue since TotalView uses a single window control.

There is a Quick View of TotalView available for new users. Further documentation and tutorials can be found on their website or in the cluster at:

```
/apps/TOTALVIEW/totalview/doc/pdf
```

https://www.bsc.es/support/TotalView-QuickView.pdf
6.6 Tracing jobs with BSC Tools

In this section you will find an introductory guide to get execution traces in Nord. The tracing tool Extrae supports many different tracing mechanisms, programming models and configurations. For detailed explanations and advanced options, please check the complete Extrae User Guide.

The most recent stable version of Extrae is always located at:

```
/apps/CEPBTOOLS/extrae/latest/default/64
```

This package is compatible with the default MPI runtime in Nord (OpenMPI). Packages corresponding to older versions and enabling compatibility with other MPI runtimes (IntelMPI, MVAPICH) can be respectively found under this directory structure:

```
/apps/CEPBTOOLS/extrae/<choose-version>/<choose-runtime>/64
```

In order to trace an execution, you have to load the module extrae and write a script that sets the variables to configure the tracing tool. Let’s call this script trace.sh. It must be executable (chmod +x ./trace.sh). Then your job needs to run this script before executing the application.

Example for MPI jobs:

```bash
#!/bin/bash
#BSUB -n 128
#BSUB -o output_%J.out
#BSUB -e output_%J.err
#BSUB -R "span[ptile=16]"
#BSUB -J job_name
#BSUB -W 00:10
module load extrae
mpirun ./trace.sh ./app.exe
```

Example for threaded (OpenMP or pthreads) jobs:

```bash
#!/bin/bash
#BSUB -n 1
#BSUB -oo output_%J.out
#BSUB -eo output_%J.err
#BSUB -J job_name
#BSUB -W 00:10
module load extrae
./trace.sh ./app.exe
```

Example of trace.sh script:

```bash
#!/bin/bash
export EXTRAE_CONFIG_FILE=./extrae.xml
export LD_PRELOAD=${EXTRAE_HOME}/lib/<tracing-library>
$+
```

Where:

- **EXTRAE_CONFIG_FILE** points to the Extrae configuration file. Editing this file you can control the type of information that is recorded during the execution and where the resulting trace file is written, among other parameters. By default, the resulting trace file will be written into the current working directory. Configuration examples can be found at: `${EXTRAE_HOME}/share/examples`
- `<tracing-library>` depends on the programming model the application uses:
<table>
<thead>
<tr>
<th>Job Type</th>
<th>Tracing library</th>
<th>An example to get started</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI</td>
<td>libmpitrace.so (C codes) libmpitracef.so (Fortran Codes)</td>
<td>MPI/ld-preload/job.lsf</td>
</tr>
<tr>
<td>OpenMP</td>
<td>libomptrace.so</td>
<td>OMP/run_ldpreload.sh</td>
</tr>
<tr>
<td>Pthreads</td>
<td>libpttrace.so</td>
<td>PTHREAD/README</td>
</tr>
<tr>
<td>OmpSs</td>
<td>-</td>
<td>OMPSS/job.lsf</td>
</tr>
<tr>
<td>Sequential job (manual instrumentation)</td>
<td>libseqtrace.so</td>
<td>SEQ/run_instrumented.sh</td>
</tr>
<tr>
<td>*Automatic instrumentation of user functions and parallel runtime calls</td>
<td>-</td>
<td>SEQ/run_dyninst.sh</td>
</tr>
</tbody>
</table>

* Jobs that make explicit calls to the Extrae API do **not** load the tracing library via LD_PRELOAD, but link with the libraries instead.

** Jobs using automatic instrumentation via Dyninst **neither** load the tracing library via LD_PRELOAD nor **link with it.

For other programming models and their combinations, check the full list of available tracing libraries at section 1.2.2 of the Extrae User Guide.

7 Getting help

BSC provides users with excellent consulting assistance. User support consultants are available during normal business hours, Monday to Friday, 09 a.m. to 18 p.m. (CEST time).

User questions and support are handled at: support@bsc.es

If you need assistance, please supply us with the nature of the problem, the date and time that the problem occurred, and the location of any other relevant information, such as output files. Please contact BSC if you have any questions or comments regarding policies or procedures.

Our address is:

Barcelona Supercomputing Center - Centro Nacional de Supercomputación
C/ Jordi Girona, 31, Edificio Capilla 08034 Barcelona

7.1 Frequently Asked Questions (FAQ)

You can check the answers to most common questions at BSC’s Support Knowledge Center. There you will find online and updated versions of our documentation, including this guide, and a listing with deeper answers to the most common questions we receive as well as advanced specific questions unfit for a general-purpose user guide.

8 Appendices

8.1 SSH

SSH is a program that enables secure logins over an insecure network. It encrypts all the data passing both ways, so that if it is intercepted it cannot be read. It also replaces the old insecure tools like telnet, rlogin, rep, ftp, etc. SSH is a client-server software. Both machines must have ssh installed for it to work.

We have already installed a ssh server in our machines. You must have installed an ssh client in your local machine. SSH is available without charge for almost all versions of UNIX (including Linux and MacOS X). For UNIX and derivatives, we recommend using the OpenSSH client, downloadable from http://www.openssh.org, and for Windows users we recommend using Putty, a free SSH client that can be downloaded from http://www.putty.org. Otherwise, any client compatible with SSH version 2 can be used.

https://tools.bsc.es/tools_manuals
http://www.bsc.es/user-support/
This section describes installing, configuring and using the client on Windows machines. No matter your client, you will need to specify the following information:

- Select SSH as default protocol
- Select port 22
- Specify the remote machine and username

For example with putty client:

![Figure 1: Putty client](image)

This is the first window that you will see at putty startup. Once finished, press the Open button. If it is your first connection to the machine, you will get a Warning telling you that the host key from the server is unknown, and will ask you if you are agree to cache the new host key, press Yes.

![Figure 2: Putty certificate security alert](image)

IMPORTANT: If you see this warning another time and you haven’t modified or reinstalled the ssh client, please do not log in, and contact us as soon as possible (see Getting Help [chapter 7]).

Finally, a new window will appear asking for your login and password:
8.2 Transferring files

To transfer files to or from the cluster you need a secure ftp (sftp) or secure copy (scp) client. There are several different clients, but as previously mentioned, we recommend using of Putty clients for transferring files: `psftp` and `pscp`. You can find it at the same web page as Putty (http://www.putty.org).

Some other possible tools for users requiring graphical file transfers could be:

- WinSCP: Freeware Sftp and Scp client for Windows (http://www.winscp.net)
- SSH: Not free. (http://www.ssh.org)

Using PSFTP

You will need a command window to execute psftp (press start button, click run and type cmd). The program first asks for the machine name (mn1.bsc.es), and then for the username and password. Once you are connected, it’s like a Unix command line.

With command `help` you will obtain a list of all possible commands. But the most useful are:

- `get file_name`: To transfer from the cluster to your local machine.
- `put file_name`: To transfer a file from your local machine to the cluster.
- `cd directory`: To change remote working directory.
- `dir`: To list contents of a remote directory.
- `lcd directory`: To change local working directory.
- `!dir`: To list contents of a local directory.

You will be able to copy files from your local machine to the cluster, and from the cluster to your local machine. The syntax is the same that cp command except that for remote files you need to specify the remote machine:

Copy a file from the cluster:
> pscp.exe username@mn1.bsc.es:remote_file local_file
Copy a file to the cluster:
> pscp.exe local_file username@mn1.bsc.es:remote_file
8.3 Using X11

In order to start remote X applications you need an X-Server running in your local machine. Here is a list of most common X-servers for windows:

- Cygwin/X: http://x.cygwin.com
- X-Win32: http://www.starnet.com
- WinaXe: http://labf.com
- XconnectPro: http://www.labtam-inc.com
- Exceed: http://www.hummingbird.com

The only Open Source X-server listed here is Cygwin/X, you need to pay for the others. Once the X-Server is running run `putty` with X11 forwarding enabled:

![Putty X11 configuration](image)

Figure 4: Putty X11 configuration

8.4 Using the DDT debugger

Introduction to debugging with DDT

Debugging programs that run on MPI can be fairly cumbersome without the right tools, so we have provided our systems with the DDT program.

DDT is a debugger initially developed by Allinea, now property of ARM. The debugger is specifically designed to be used in HPC environments, as its purpose is to keep track of the state of the program in every MPI node/task it uses.

With DDT you can (but not limited to): * Interactively track and debug program crashes that may occur on certain nodes. * Track memory related problems in your programs. * Use offline (non-interactive) debugging for long running jobs. * Get more information about crashes.

We'll begin explaining how to set up your environment and job scripts for a simple debugging session.
Basic interactive debugging with DDT

To debug with DDT using an interactive session (as if it was a typical debugger), you need to do some things: you need to compile your program with a debugging flag and then modify your job script so your program is launched with the option to connect to the debugger (note that this is only one of the ways you use DDT).

Compiling your program

To compile your program for debugging purposes, you need to add the following flags to your compiler:
* -g (enabling executable debugging) * -O0 (do not apply optimizations)

For example, the compiling line would be rewritten in the following manner:

```
$ mpicc application.c -o application.exe  $ mpicc -O0 -g application.c -o application.exe
```

Modifying your job script

Your job script needs to be modified so it can launch DDT when the job enters execution in the queue. To do that, you need to specify that you want to connect with the DDT debugger when the job is launched, loading the DDT module and adding these parameters to the line that launches the program:

```
module load DDT
mpirun ./application.exe  ddt --connect mpirun ./application.exe
```

Launching the job script

Finally, to launch the job script with the debugger you need to load the DDT module, start the program in background mode and then launch the modified job script:

```
$ module load DDT  [if not already loaded]
$ ddt &
$ sbatch your_modified_jobscript
```

We have provided a capture of a real modified job script as an example:

The DDT main screen will appear, but you have to wait until the job enters execution. To do interactive debugging, we strongly recommend using the debug queue as it normally has a shorter waiting time, but remember that you will have limited resources.

When the job enters execution, you will be prompted with the option to accept the incoming connection. It will give you some options before loading the debugger, mainly so it can know if you use OpenMP, CUDA or some sort of memory debugging.

Once the desired options are selected and the program is loaded, you will see the main GUI for the debugger.

Quick look of common utilities and general usage

DDT largely operates the same way than most classical debuggers for serial applications, with the distinct difference that it can effectively track the state of the execution of every MPI process involved. We’ve made a general legend of the different utilities present on the main GUI:

1. General debugging actions.
2. Process selector. You can also focus on single processes or threads of a process.
3. Project tree.
5. Variable and stack monitoring window.
6. Input/Output and general tracking utility window.
7. Evaluate window (used to view values for arbitrary expressions and global variables).

Outside the process selector, everything is like a normal debugger and is used in a similar way.
#!/bin/bash

#SBATCH --job-name=armddt
#SBATCH --nodes=1
#SBATCH --ntasks=8
#SBATCH --time=00:30:00
#SBATCH --output=armddt-%j.log
#SBATCH --error=armddt-%j.err
#SBATCH --qos=benchmark

module load impi
module load DDT

ddt --connect mpirun ./mmult1_c.exe 1024

Figure 5: Example of a job script

![Debugging options](image)

Figure 6: Debugging options
Figure 7: Main GUI

Figure 8: Utility legend
Offline debugging

As we know, jobs can take a while to complete or even get into an execution state, so an interactive debugging session may not be the best solution if we expect them to take some time. DDT offers the possibility of offline debugging, allowing us to come back whenever the execution finishes. The execution will generate a file (either a .html or .txt) where you can check the parameters of the execution and the problems that it may have encountered.

To do it, you need to follow the next steps.

Compiling the application for debugging

For this step, you have to compile the application applying the same changes we did in the previous chapter:

```
$ mpicc application.c -o application.exe  $ mpicc -O0 -g application.c -o application.exe
```

Modifying your job script

Make sure that your script loads the ddt module:

```
module load DDT
```

And now, modify your launching adding ddt and your desired flags. Note that you have the option to choose between generating a .txt or a .html. We will generate a .html in this example:

```
ddt --offline --output=report.html mpirun ./your_application.exe
```

Launching the job

To launch the job, you just need to launch it as if you were launching it normally. Once the execution finishes, the report file will be generated. If it was a .txt, you can check it on the login node itself. The HTML version is more user-friendly and interactive, but needs a web browser to display it, so you will need to transfer it to your local machine.

Here's an example of a report:

It may have caught your eye that there's a “Memory Leak Report” tab. DDT allows memory debugging with different granularities, which can be really helpful. Let's talk more about that in the following chapter.

Enabling memory debugging with DDT

DDT can track down memory related issues like invalid pointers, abnormal memory allocation, memory leaks and more. You can enable memory debugging using two different methods, one for interactive debugging and the other for offline debugging.

Interactive debugging

You don’t have to modify anything for this. When your job requests a connection to DDT, you can check the “Memory Debugging” (which can be seen in Fig. 2) option with the desired parameters.

Offline debugging

For offline debugging you will need to add a simple flag to the execution line inside your job script. Using the line we used for the offline debugging chapter as an example, add this flag:

```
$ ddt -offline -mem-debug -output=report.html mpirun ./your_application.exe
```

With this, you should be able to have memory-related information inside you report.
Example of a debugging, step by step

To end this manual, we will provide you a code and we will debug it using DDT. You can follow the same procedures that we will show by yourself. You can get the source code here (copy it to your home folder and extract it):

(Incasing you're inside your home folder)
$ cp /apps/DDT/SRC/DDT_example.tar.gz ~
$ tar xvf DDT_example.tar.gz

Inside the generated folder you will see some source code files (one in C and the other one in Fortran, we'll use the C version), a job script and a makefile alongside a solutions folder.

Compiling

Our job is to find and fix what is wrong with the source code, so the first step will be compiling our application using our makefile (feel free to check the contents). This makefile has an option to add the required compiling flags for debugging, so we'll take advantage of it:

$ make DEBUG=1

This will generate the required executable files for when we launch our job script.

Adapting the job script

The job script provided is functional as it is, but we will be doing an interactive debugging session, so you could be waiting for a while. To alleviate that, we will be using the debug queue, which shouldn't have too many waiting jobs. To achieve that, add this line to your job script:

#SBATCH --qos=debug

We're almost ready to launch it!
Launching the program and the debugger

First we need to load our DDT module:

```sh
$ module load DDT
```

Once we’ve done this, we can launch DDT as a background process:

```sh
$ ddt &
```

As you read before, the DDT window will appear, but ignore it for now. Now it’s time to launch our job script:

```sh
$ sbatch job.sub
```

It may take a while, but eventually your job will enter execution and DDT will prompt you with a little window telling you there’s an incoming connection. Accept it. In the next window you don’t need to check any box, just press “Run”.

Locating the issue with the debugger

First of all, let’s talk a bit about the program we are launching. It’s a matrix multiplication implemented with MPI, following this algorithm:

1. Master initializes matrices A, B and C.
2. Master slices the matrices A and C, sends them to slaves.
3. Master and slaves perform the multiplication.
4. Slaves send their results back to master.
5. Master writes the result matrix C in an output file.

Here you have a diagram showing the data distribution:

![Diagram of data distribution](image)

Figure 10: Data distribution

Reading the code you can see the detailed implementation. To see if the program works, we can just execute it without any break point. Let’s do that:

If everything works as expected (which is, that it isn’t really working), we should see that DDT prompts us with a notification that our program received a signal (SIGFPE, arithmetic exception) and stopped.
DDT will give us some hints. The first one is the nature of the problem, in this case an integer division by zero. Not only that, it also tells (and shows) the line of code that launched the error. We can deduce that there’s something wrong with the operation “size/nslices”.

Using the window to our right, we can check the values of all variables affected by the current line of code, and we can see that the problem resides in the variable “nslices”, having 0 as its value.

The variable “nslices” is a parameter given to the function “mmult” and it’s not changed anywhere inside it. That means that the value provided to our function is incorrect and we should check how the function was called. Looking through the code, we locate it:

We can see the arguments that this call provided. Specifically, we’re interested in the “mr” variable, which in theory should be the one defining the number of slices used to divide the partition the data of the matrices.

Inspecting the code, we can see that the “mr” variable is not what we thought it was. Why? Because we can see that in reality is the variable that holds the identifier of our MPI rank. Our conclusion is that the error is just putting a wrong variable as a function parameter.

This explains why only process 0 is the only one that gives us this problem, as it will be the only one where “mr” equals zero. We also know that the right variable is defined in the code, so we only need to find it and put it as the argument inside the “mmult” call.
Fixing the issue

Knowing that this program distributes the data into N slices of the matrices (one for each process), we can use the variable “nproc” shown above for that purpose. The only thing left to do is to apply the change to the function call:

```c
mmult(size, mr, mat_a, mat_b, mat_c); mmult(size, nproc, mat_a, mat_b, mat_c);
```

And with this, the program should work now. Let’s recompile it and launch it again following the same steps we did for the first version, compiler and all. Once DDT is up and running, we can directly click the continue button. This time, DDT shouldn’t give us any problems and the execution should end normally, as shown see here:

And this is it. We’ve debugged our first application! Although it is a rather simple application and fix, it’s a good exercise to grasp the methodology to use with DDT. We hope you find it useful in future debugging sessions.

Where can I know more?

If you need more information about DDT and how to use it, check the reference manual:

[link](https://developer.arm.com/docs/101336/0701/ddt)