Platform LSF
Version 9 Release 1.2

Installing on UNIX and Linux

IBM
Platform LSF
Version 9 Release 1.2

Installing on UNIX and Linux
Note

Before using this information and the product it supports, read the information in "Notices" on page 39.

First edition

This edition applies to version 9, release 1 of IBM Platform LSF (product number 5725G82) and to all subsequent releases and modifications until otherwise indicated in new editions.

Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the change.

If you find an error in any Platform Computing documentation, or you have a suggestion for improving it, please let us know. Send your suggestions, comments and questions to the following email address:

pccdoc@ca.ibm.com

Be sure include the publication title and order number, and, if applicable, the specific location of the information about which you have comments (for example, a page number or a browser URL). When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Example installation directory structure</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Plan your installation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGO in the LSF cluster</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Prepare your systems for installation</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Install a new LSF cluster (lsfinstall)</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>After installing LSF</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>If you install LSF as a non-root user</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Add hosts</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Running host setup remotely (rhostsetup)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Enable LSF HPC Features</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Optional LSF HPC features configuration</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>install.config</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>About install.config</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Parameters</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>slave.config</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>EGO_DAEMON_CONTROL</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>ENABLE_EGO</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>EP_BACKUP</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>LSF_ADMINS</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>LSF_ENTITLEMENT_FILE</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>LSF_LIM_PORT</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>LSF_SERVER_HOSTS</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>LSF_TARDIR</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>LSF_LOCAL_RESOURCES</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>LSF_TOP</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>SILENT_INSTALL</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>LSF_SILENT_INSTALL_TARLIST</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Notices</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Trademarks</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Privacy policy considerations</td>
<td>41</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1992, 2013
Chapter 1. Example installation directory structure
Chapter 2. Plan your installation

Plan your installation to determine the required parameters for the install.config file.

- Choose a primary LSF administrator (owns the LSF and EGO configuration files and log files; for example, LSF_ADMINS="lsfadmin")
- Choose a shared LSF installation directory (for example, LSF_TOP="/usr/share/lsf")
- Choose LSF hosts (master host, master candidates, server hosts, and client-only hosts); for example:

 LSF_ADD_SERVERS="hostm hostb hostc hostd"
 LSF_MASTER_LIST="hostm hostd"
 LSF_ADD_CLIENTS="hoste hostf"

 Important: Do not use the name of any host, user, or user group as the name of your cluster.

- Choose LSF server hosts that are candidates to become the master host for the cluster, if you are installing a new host to be dynamically added to the cluster (for example, LSF_MASTER_LIST="hosta hostb")
- Choose a cluster name (39 characters or less with no white spaces; for example, LSF_CLUSTER_NAME="cluster1")

- If you are installing LSF Standard Edition, choose a configuration template to determine the initial configuration of your new cluster (for example, CONFIGURATION_TEMPLATE="HIGH_THROUGHPUT"). Select one of the following templates depending on the type of jobs your cluster will run:

 DEFAULT
 Select this template for clusters with mixed workload. This configuration can serve different types of workload with good performance, but is not specifically tuned for a particular type of cluster.

 PARALLEL
 Select this template for clusters running large parallel jobs. This configuration is designed for long running parallel jobs and should not be used for clusters that mainly run short jobs due to the longer reporting time for each job.

 HIGH_THROUGHPUT
 This template is designed to be used for clusters that mainly run short jobs, where over 80% of jobs finish within one minute. This high turnover rate requires LSF to be more responsive and fast acting, but will consume more resources as the daemons become busier.

 Note: Do not specify CONFIGURATION_TEMPLATE for LSF Express Edition and Advanced Edition. These editions have their own default configuration templates for all installations.

- If you are planning to use IBM Platform Analytics or IBM Platform Application Center, set ENABLE_STREAM="Y" to enable LSF event streaming.
- If you have made any custom changes to your existing esubs, create a backup of these.
- If you are planning to run an unattended install, set SILENT_INSTALL="Y" and LSF_SILENT_INSTALL_TARLIST="ALL | Package_Name ..."). The silent install is a
non-interactive installation without any input and output. Installation log files show output and error messages during the installation.

- If you are planning to run a quiet install, set LSF_QUIET_INSTALL="Y". The quiet install shows all messages but does not prompt for confirmations.

EGO in the LSF cluster

When EGO is enabled in the cluster, EGO may control services for components. This is recommended. It allows failover among multiple management hosts, and allows EGO cluster commands to start, stop, and restart the services.

See the LSF administrator documentation for more details on the benefits of enabling EGO and using EGO to control the services.

Installation choices

When you install the cluster and enable EGO, you can configure the following separately:

- EGO control of `sbatchd` and `res`
Chapter 3. Prepare your systems for installation

- Ensure the installation file system on the file server host has enough disk space for all host types (see the LSF installer script package information below).
- Ensure the top-level LSF installation directory (LSF_TOP=EGO_TOP) is accessible with the same path name from all hosts in the LSF cluster (for example, /usr/share/lsf).
- Ensure the installation file system containing LSF_TOP (EGO_TOP) is writable by the user account that is running lsfinstall.
- Create user accounts for LSF administrators (for example, lsfadmin).
- Get the LSF entitlement file for the edition you are installing:
 - platform_lsf_std_entitlement.dat for LSF Standard Edition
 - platform_lsf_exp_entitlement.dat for LSF Express Edition
 - platform_lsf_adv_entitlement.dat for LSF Advanced Edition
- Select the appropriate LSF installer script package:
 - lsf9.1.2_lsfinstall_linux_x86_64.tar.Z for Linux x86_64 platforms requiring the Linux JRE. Requires approximately 120 MB.
 - lsf9.1.2_lsfinstall.tar.Z for all other platforms requiring the JRE. Requires approximately 1300 MB.
 - lsf9.1.2_no_jre_lsfinstall.tar.Z for all platforms not requiring the JRE. JRE version 1.4 or higher must already be installed on the system. Requires approximately 1 MB.
- Get the LSF installer script package that you selected and extract it.
 For example,
 - Linux x86_64 platforms: # zcat lsf9.1.2_lsfinstall_linux_x86_64.tar.Z | tar xvf -
 - Other platforms: # zcat lsf9.1.2_lsfinstall.tar.Z | tar xvf -
 - No JRE required: # zcat lsf9.1.2_no_jre_lsfinstall.tar.Z | tar xvf -
- Get the LSF distribution packages for all host types you need and put them in the same directory as the extracted LSF installer script.
 For example, for Linux 2.6 kernel glibc version 2.3, the distribution package is lsf9.1.2_linux2.6-glibc2.3-x86_64.tar.Z.
 Do not extract the distribution packages.
- If you are installing LSF on MacOS, obtain the JRE from the Apple support website or via software update and install the JRE on the MacOS host first. The LSF installation program will then find the JRE in the $PATH.
- Get the LSF documentation tar file lsf9.1.2_documentation.tar.Z and put it in the same directory as lsf9.1.2_lsfinstall.tar.Z. Do not extract the tar file.

Integrating LDAP with LSF

To install LSF in an LDAP environment, check that the following are satisfied:
- The LSF administrator is a defined user in LDAP.
- The OS is configured to use LDAP for authentication.
- The LDAP administrator grants privileges to the LSF installer user (usually root) to retrieve the user list from the LDAP server.
IBM Platform entitlement files

LSF uses entitlement files to determine which feature set to be enabled or disabled based on the edition of the product. The entitlement files are:

- LSF Standard Edition - platform_lsf_std_entitlement.dat
- LSF Express Edition - platform_lsf_exp_entitlement.dat
- LSF Advanced Edition - platform_lsf_adv_entitlement.dat

The entitlement file is installed as `<LSF_TOP>/conf/lsf.entitlement`.

You must download the entitlement file for the edition of the product you are running, and set `LSF_ENTITLEMENT_FILE` in `install.config` to the full path to the entitlement file you downloaded.

If you are installing LSF Express Edition, you can later upgrade to LSF Standard Edition to take advantage of the additional functionality of LSF Standard Edition. Simply reinstall the cluster with the LSF Standard entitlement file (`platform_lsf_std_entitlement.dat`). You can also upgrade to LSF Advanced Edition to take advantage of even more functionality. Simply reinstall the cluster with the LSF Advanced entitlement file (`platform_lsf_adv_entitlement.dat`).

You can also manually upgrade from LSF Express Edition to Standard Edition or Advanced Edition. Get the LSF Standard entitlement configuration file `platform_lsf_std_entitlement.dat` or `platform_lsf_adv_entitlement.dat`, copy it to `<LSF_TOP>/conf/lsf.entitlement` and restart your cluster. The new entitlement configuration enables additional functionality, but you may need to change some of the default LSF Express configuration parameters to use the LSF Standard Edition or Advanced Edition features.

Once LSF is installed and running, run the `lsid` command to see which edition of LSF is enabled.
Chapter 4. Install a new LSF cluster (lsfinstall)

1. Log on as root to the LSF installation file server.
 If you are not root, see Chapter 6, “If you install LSF as a non-root user,” on page 11.
2. Change to lsf9.1.2_lsfinstall/.
3. Edit ./install.config or ./slave.config to specify the installation variables you want.
 Uncomment the options you want in the template file, and replace the example values with your own settings.

 Tip: The sample values in the install.config and slave.config template files are examples only. They are not default installation values.
 The following install.config parameters are required for installation:
 - **LSF_TOP**
 - **LSF_ADMINS**
 - **LSF_CLUSTER_NAME**
 - **LSF_MASTER_LIST**
 - **LSF_ENTITLEMENT_FILE**
 - **LSF_TARDIR**
 If you do not specify this parameter, the default value is the parent directory of the current working directory from which lsfinstall is run.
 - **CONFIGURATION_TEMPLATE** (LSF Standard Edition only)
 If you do not specify this parameter, the default value is DEFAULT.
 If you are intending to include some servers in your cluster that will not share the specified LSF_TOP in slave.config, then you must complete the slave.config file and run lsfinstall -f -s slave.config.
 For details on install.config parameters, refer to install.config.
 For details on slave.config parameters, refer to slave.config.
4. Run lsfinstall -f install.config to install the cluster.
5. Test your cluster by running some basic LSF commands (for example, lsid, lshosts, bhosts).
Chapter 5. After installing LSF

1. Optional. Run `hostsetup` to set up LSF hosts.

 Note: Running `hostsetup` is required if you will be running IBM POE jobs using IBM Parallel Environment Runtime Edition (or IBM PE Runtime Edition).

 a. Log on to each LSF server host as `root`. Start with the LSF master host.
 If you are integrating LSF with IBM Parallel Environment (PE), you must log on as `root`.
 Otherwise, you can continue with host setup if you are not `root`, but by default, only `root` can start the LSF daemons.

 b. Run `hostsetup` on each LSF server host. For example, to use the LSF cluster installed in `/usr/share/lsf` and configure LSF daemons to start automatically at boot time:
      ```
      # cd /usr/share/lsf/9.1/install
      # ./hostsetup --top="/usr/share/lsf" --boot="y"
      ``
      For complete `hostsetup` usage, enter `hostsetup -h`.

2. Log on to the LSF master host as `root`, and set your LSF environment:
   - For `csh` or `tcsh`: `% source <LSF_TOP>/conf/cshrc.lsf`
   - For `sh, ksh, or bash`: `$. <LSF_TOP>/conf/profile.lsf`

3. Optional. Enable LSF for users.
   Ensure all users include `<LSF_CONFDIR>/conf/cshrc.lsf` or `<LSF_CONFDIR>/conf/profile.lsf` in their `.cshrc` or `.profile`.

4. Run `lsfstartup` to start the cluster.
   `lsfstartup` will use RSH to connect to all nodes in the cluster and start LSF. If RSH is not configured in your environment, you can configure `lsfstartup` to use SSH by adding the following line to your `lsf.conf`:
   ```
 LSF_RSH=ssh
   ```

5. Test your cluster by running some basic LSF commands (for example, `lsid`, `lshosts`, `bhosts`).
   After testing your cluster, be sure all LSF users include `LSF_CONFDIR/cshrc.lsf` or `LSF_CONFDIR/profile.lsf` in their `.cshrc` or `.profile`. 
Chapter 6. If you install LSF as a non-root user

If you install without root permissions, you must choose either a single-user cluster or a multi-user cluster:

- Single-user: Your user account must be primary LSF administrator. This account will be able to start LSF daemons, but it is the only user account that can submit jobs to the cluster. To display load information this user account must also be able to read the system kernel information, such as /dev/kmem.

- Multi-user: By default, only root can start the LSF daemons. Any user can submit jobs to your cluster. To make the cluster available to other users, you must manually change the ownership and setuid bit for lsadmin and badmin to root, and the file permission mode to -rwxr-xr-x (4755) so that the user ID bit for the owner is setuid.

  Use the following commands to set the correct owner, user ID bit, and file permission mode for a multi-user cluster:
  
  ```
 # chown root lsadmin badmin eauth swtbl_api ntbl_api
 # chmod 4755 lsadmin badmin eauth swtbl_api ntbl_api
  ```

Running IBM POE jobs in LSF

- Single-user: To run IBM POE jobs, you must manually change the ownership and setuid bit for swtbl_api and ntbl_api to root, and the file permission mode to -rwxr-xr-x (4755) so that the user ID bit for the owner is setuid.

  Use the following commands to set the correct owner, user ID bit, and file permission mode:
  
  ```
 # chown root swtbl_api ntbl_api
 # chmod 4755 swtbl_api ntbl_api
  ```
Chapter 7. Add hosts

Set up hosts to join the cluster.

Note:

If you will be running IBM POE jobs using IBM Parallel Environment Runtime Edition (or IBM PE Runtime Edition) you must run hostsetup.

If you are integrating LSF with IBM Parallel Environment (PE), you must run hostsetup as root.
1. # hostsetup --top="/usr/share/lsf" --boot="y"
   This sets up a host to use the cluster installed in /usr/share/lsf. It also configures the LSF daemons to start automatically (--boot="y").
2. # hostsetup --top="/usr/share/lsf" --silent
   This is the silent installation option which does not display any output messages.

Running host setup remotely (rhostsetup)

Before using rhostsetup, you must configure the following parameters at the top of the script:
- LSF_RSHCMD: Remote shell command (e.g, rsh or ssh) accessing the remote host.
- LSF_HOSTS: Lists hosts to run hostsetup on.
- LSF_TOPDIR: Sets the hostsetup --top option. Specify the full path to the top-level installation directory. rhostsetup tries to detect this from lsf.conf if it is not defined here.
- LSF_BOOT: Sets the hostsetup --boot option. Default is no (n).
- LSF_QUIET: Sets the hostsetup --quiet option. Default is no (n).

Use the rhostsetup script to launch hostsetup on remote hosts.

If you are integrating LSF with IBM Parallel Environment (PE), you must run rhostsetup as root.

rhostsetup uses either ssh or rsh. It is included in the installer script package lsf9.1.2_lsfinstall.tar.Z and is located in the lsf9.1.2_lsfinstall directory created when you uncompress and extract the installer script package.

After installation, rhostsetup is located in <LSF_TOP>/9.1/install/.

Run the rhostsetup script.

For example:
LSF_RSHCMD="ssh -n"
LSF_HOSTS="hostA hostB hostC"
LSF_TOPDIR="/usr/local/lsf"
LSF_BOOT=y
LSF_QUIET=n
Enable LSF HPC Features

HPC features are installed on UNIX or Linux hosts as part of the PARALLEL template. When you install, some changes are made for you automatically. You should add the appropriate resource names under the RESOURCES column of the Host section of \texttt{lsf.cluster.cluster\_name}.

The HPC feature installation automatically configures the following files:

- \texttt{lsb.modules}
- \texttt{lsb.resources}
- \texttt{lsb.queues}
- \texttt{lsf.cluster}
- \texttt{lsf.conf}
- \texttt{lsf.shared}

**\texttt{lsb.modules}**

- Adds the external scheduler plugin module names to the PluginModule section of \texttt{lsb.modules}:

  ```
 Begin PluginModule
 SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
 schmod_default () ()
 schmod_fcfs () ()
 schmod_fairshare () ()
 schmod_limit () ()
 schmod_parallel () ()
 schmod_reserve () ()
 schmod_mc () ()
 schmod_preemption () ()
 schmod_adrvsv () ()
 schmod_ps () ()
 schmod_affinity () ()
 #schmod_dc () ()
 schmod_aps () ()
 schmod_cpuset () ()
 End PluginModule
  ```

  **Note:**

  The HPC plugin names must be configured after the standard LSF plugin names in the PluginModule list.

**\texttt{lsb.resources}**

For IBM POE jobs, \texttt{lsfinstall} configures the ReservationUsage section in \texttt{lsb.resources} to reserve HPS resources on a per-slot basis.

Resource usage defined in the ReservationUsage section overrides the cluster-wide RESOURCE\_RESERVE\_PER\_SLOT parameter defined in \texttt{lsb.params} if it also exists.

```
Begin ReservationUsage
RESOURCE METHOD
adapter_windows PER_SLOT
nrt_windows PER_SLOT
End ReservationUsage
```
lsb.queues

Configures hpc_ibm queue for IBM POE jobs and the hpc_ibm_tv queue for debugging IBM POE jobs:

Begin Queue
QUEUE_NAME = hpc_linux
PRIORITY = 30
NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0  # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA  # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000  # jobs data segment limit
#CORELIMIT = 20000
#PROCLIMIT = 5  # job processor limit
#USERS = all  # users who can submit jobs to this queue
#HOSTS = all  # hosts on which jobs in this queue can run
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v Hey
DESCRIPTION = IBM Platform LSF 9.1 for linux.
End Queue

Begin Queue
QUEUE_NAME = hpc_linux_tv
PRIORITY = 30
NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0  # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA  # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000  # jobs data segment limit
#CORELIMIT = 20000
#PROCLIMIT = 5  # job processor limit
#USERS = all  # users who can submit jobs to this queue
#HOSTS = all  # hosts on which jobs in this queue can run
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v Hey
TERMINATE_WHEN = LOAD_PREEMPT WINDOW
RERUNNABLE = NO
INTERACTIVE = NO
DESCRIPTION = IBM Platform LSF 9.1 for linux debug queue.
End Queue

Begin Queue
QUEUE_NAME = hpc_ibm
PRIORITY = 30
NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0  # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA  # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000  # jobs data segment limit
#CORELIMIT = 20000
#PROCLIMIT = 5  # job processor limit
BEGIN QUEUE

QUEUE_NAME = hpc_ibm_tv
PRIORITY = 30
NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0 # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000 # jobs data segment limit
#CORELIMIT = 20000
#PROCLIMIT = 5 # job processor limit
#RES_REQ = select[ poe > 0 ]
REQUEUE_EXIT_VALUES = 133 134 135
TERMINATE WHEN = LOAD PREEMPT WINDOW
RERUNNABLE = NO
INTERACTIVE = NO
DESCRIPTION = IBM Platform LSF 9.1 for IBM debug queue. This queue is to run POE jobs ONLY.

End Queue

lsf.cluster.cluster_name

For IBM POE jobs, configures the ResourceMap section of lsf.cluster.cluster_name to map the following shared resources for POE jobs to all hosts in the cluster:

Begin ResourceMap

RESOURCENAME LOCATION
poe [default]
adapter_windows [default]
nrt_windows [default]
dedicated_tasks {0@[default]}
ip_tasks {0@[default]}
us_tasks {0@[default]}
End ResourceMap

lsf.conf

- LSBSUB_COMMANDNAME=Y to lsf.conf to enable the LSF_SUB_COMMANDLINE environment variable required by esub.
- LSF_ENABLE_EXTSCHEDULER=Y: LSF uses an external scheduler for topology-aware external scheduling.
- LSBSUB_COMMANDNAME=Y: LSF schedules jobs based on the shortest CPU radius in the processor topology using a best-fit algorithm. On HP-UX hosts, sets the full path to the HP vendor MPI library libmpirm.sl LSF_VPLUGIN="/opt/mpi/lib/"
- **LSB_RLA_PORT=port_number**, where *port_number* is the TCP port used for communication between the LSF HPC topology adapter (RLA) and sbatchd. The default port number is 6883.

- **LSB_SHORT_HOSTLIST=1**: Displays an abbreviated list of hosts in *bjobs* and *bhist* for a parallel job where multiple processes of a job are running on a host. Multiple processes are displayed in the format *processes*+*hostA*.

### lsf.shared

Defines the following shared resources required by HPC features in *lsf.shared*:

<table>
<thead>
<tr>
<th>RESOURCE_NAME</th>
<th>TYPE</th>
<th>INTERVAL</th>
<th>INCREASING</th>
<th>DESCRIPTION</th>
<th># Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>slurm</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(SLURM)</td>
<td></td>
</tr>
<tr>
<td>cpu</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(CPUSET)</td>
<td></td>
</tr>
<tr>
<td>mpich_gm</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(MPICH_GM_MPI)</td>
<td></td>
</tr>
<tr>
<td>lammpi</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(LAM_MPI)</td>
<td></td>
</tr>
<tr>
<td>mpichp4</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(MPICH_P4_MPI)</td>
<td></td>
</tr>
<tr>
<td>mvapich</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(InfiniBand_MPI)</td>
<td></td>
</tr>
<tr>
<td>sca_mpi</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(SCALI_MPI)</td>
<td></td>
</tr>
<tr>
<td>ibmmpi</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(IBM_POE_MPI)</td>
<td></td>
</tr>
<tr>
<td>hpmpi</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(HP_MPI)</td>
<td></td>
</tr>
<tr>
<td>intelmpi</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(Intel_MPI)</td>
<td></td>
</tr>
<tr>
<td>crayx1</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(Cray_X1_MPI)</td>
<td></td>
</tr>
<tr>
<td>fluent</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(fluent availability)</td>
<td></td>
</tr>
<tr>
<td>ls_dyna</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(ls_dyna availability)</td>
<td></td>
</tr>
<tr>
<td>nasring</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(nasring availability)</td>
<td></td>
</tr>
<tr>
<td>pvm</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(pvm availability)</td>
<td></td>
</tr>
<tr>
<td>openmp</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(openmp availability)</td>
<td></td>
</tr>
<tr>
<td>ansys</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(ansys availability)</td>
<td></td>
</tr>
<tr>
<td>blast</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(blast availability)</td>
<td></td>
</tr>
<tr>
<td>gaussian</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(gaussian availability)</td>
<td></td>
</tr>
<tr>
<td>lion</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(lion availability)</td>
<td></td>
</tr>
<tr>
<td>scitegic</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(scitegic availability)</td>
<td></td>
</tr>
<tr>
<td>schroedinger</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(schroedinger availability)</td>
<td></td>
</tr>
<tr>
<td>hmmer</td>
<td>Boolean</td>
<td>()</td>
<td>()</td>
<td>(hmmer availability)</td>
<td></td>
</tr>
<tr>
<td>adapter_windows</td>
<td>Numeric</td>
<td>30</td>
<td>N</td>
<td>(free adapter windows on css0 on IBM SP)</td>
<td></td>
</tr>
<tr>
<td>nrt_windows</td>
<td>Numeric</td>
<td>30</td>
<td>N</td>
<td>(The number of free nrt windows on IBM systems)</td>
<td></td>
</tr>
<tr>
<td>poe</td>
<td>Numeric</td>
<td>30</td>
<td>N</td>
<td>(poe availability)</td>
<td></td>
</tr>
<tr>
<td>css0</td>
<td>Numeric</td>
<td>30</td>
<td>N</td>
<td>(free adapter windows on css0 on IBM SP)</td>
<td></td>
</tr>
<tr>
<td>csss</td>
<td>Numeric</td>
<td>30</td>
<td>N</td>
<td>(free adapter windows on csss on IBM SP)</td>
<td></td>
</tr>
<tr>
<td>dedicated_tasks</td>
<td>Numeric</td>
<td>()</td>
<td>Y</td>
<td>(running dedicated tasks)</td>
<td></td>
</tr>
<tr>
<td>ip_tasks</td>
<td>Numeric</td>
<td>()</td>
<td>Y</td>
<td>(running IP tasks)</td>
<td></td>
</tr>
<tr>
<td>us_tasks</td>
<td>Numeric</td>
<td>()</td>
<td>Y</td>
<td>(running US tasks)</td>
<td></td>
</tr>
</tbody>
</table>

### Optional LSF HPC features configuration

After enabling LSF HPC features, you can define the following in *lsf.conf*:

- **LSF_LOGDIR=directory**
  
  In large clusters, you should set LSF_LOGDIR to a local file system (for example, */var/log/lsf*).

- **LSB_RLA_WORKDIR=directory** parameter, where *directory* is the location of the status files for RLA. Allows RLA to recover its original state when it restarts. When RLA first starts, it creates the directory defined by LSB_RLA_WORKDIR if it does not exist, then creates subdirectories for each host.

You should avoid using */tmp* or any other directory that is automatically cleaned up by the system. Unless your installation has restrictions on the LSB_SHARED_DIR directory, you should use the default:

**LSB_SHARED_DIR/cluster_name/rla_workdir**
On Linux hosts running HP MPI, set the full path to the HP vendor MPI library
libmpirm.so.

LSF_VPLUGIN="/opt/hpmpi/lib/linux_ia32/libmpirm.so"

- LSB_RLA_UPDATE="time_seconds"
  Specifies how often the HPC scheduler refreshes free node information from the
  LSF topology adapter (RLA).
  Default: 600 seconds
Chapter 8. install.config

About install.config

The install.config file contains options for LSF installation and configuration. Use `lsfinstall -f install.config` to install LSF using the options specified in install.config.

Template location

A template install.config is included in the installer script package lsf9.1_lsfinstall.tar.Z and is located in the lsf9.1_lsfinstall directory created when you uncompress and extract the installer script package. Edit the file and uncomment the options you want in the template file. Replace the example values with your own settings to specify the options for your new installation.

Important:

The sample values in the install.config template file are examples only. They are not default installation values.

After installation, the install.config containing the options you specified is located in `<LSF_TOP>/9.1/install/`.

Format

Each entry in install.config has the form:

```
NAME="STRING1 STRING2 ..."
```

The equal sign `=` must follow each NAME even if no value follows and there should be no spaces around the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Blank lines and lines starting with a pound sign (`#`) are ignored.

Parameters

- CONFIGURATION_TEMPLATE
- EGO_DAEMON_CONTROL
- ENABLE_DYNAMIC_HOSTS
- ENABLE_EGO
- ENABLE_STREAM
- LSF_ADD_SERVERS
- LSF_ADD_CLIENTS
- LSF_ADMINS
- LSF_CLUSTER_NAME
- LSF_DYNAMIC_HOST_WAIT_TIME
- LSF_ENTITLEMENT_FILE
**CONFIGURATION_TEMPLATE**

**Syntax**

CONFIGURATION_TEMPLATE="DEFAULT" "PARALLEL" "HIGH_THROUGHPUT"

**Description**

LSF Standard Edition on UNIX or Linux only. Selects the configuration template for this installation, which determines the initial LSF configuration parameters specified when the installation is complete. The following are valid values for this parameter:

**DEFAULT**

This template should be used for clusters with mixed workload. This configuration can serve different types of workload with good performance, but is not specifically tuned for a particular type of cluster.

**PARALLEL**

This template provides extra support for large parallel jobs. This configuration is designed for long running parallel jobs, and should not be used for clusters that mainly run short jobs due to the longer reporting time for each job.

**HIGH_THROUGHPUT**

This template is designed to be used for clusters that mainly run short jobs, where over 80% of jobs finish within one minute. This high turnover rate requires LSF to be more responsive and fast acting. However, this configuration will consume more resources as the daemons become busier.

The installer uses the DEFAULT configuration template when installing LSF Standard Edition on Windows.

**Note:** Do not specify `CONFIGURATION_TEMPLATE` for LSF Express Edition and Advanced Edition. These editions have their own default configuration templates for all installations.

The installer specifies the following initial configuration file parameter values based on the selected configuration template:

- **DEFAULT**
  - `lsf.conf`:
    - `DAEMON_SHUTDOWN_DELAY=180`
    - `LSF_LINUX_CGROUP_ACCT=Y`
    - `LSF_PROCESS_TRACKING=Y`
  - `lsb.params`:
The installer specifies the following initial configuration parameters for all configuration templates:

- lsf.conf:
  - EGO_ENABLE_AUTO_DAEMON_SHUTDOWN=Y
  - LSB_DISABLE_LIMLOCK_EXCL=Y
  - LSB_MOD_ALL_JOBS=Y
  - LSB_DISABLE_LSRUN=Y
  - LSB_SUBK_SHOW_EXEC_HOST=Y
  - LSF_PIM_LINUX_ENHANCE=Y
  - LSF_PIM_SLEEPTIME_UPDATE=Y
  - LSF_STRICT_RESREQ
  - LSF_UNIT_FOR_LIMITS=MB

- lsb.params:
  - ABS_RUNLIMIT=Y
  - DEFAULT_QUEUE=normal interactive
  - JOB_ACCEPT_INTERVAL=0
  - MAX_CONCURRENT_JOB_QUERY=100
  - MBD_SLEEP_TIME=10
  - PARALLEL_SCHED_BY_SLOT=Y

In addition, the installer enables the following features for all configuration templates:

- Fairshare scheduling (LSF Standard Edition and Advanced Edition): All queues except admin and license have fairshare scheduling enabled as follows in lsb.queues:

```bash
LSB_HPC_EXTENSIONS="CUMULATIVE_RUSAGE LSB_HCLOSE_BY_RES SHORT_EVENTFILE"
```
Begin Queue
.
FAIRSHARE=USER_SHARES[[default, 1]]
.
End Queue

- Host groups (LSF Standard Edition on UNIX or Linux): Master candidate hosts are assigned to the master_hosts host group.
- User groups (LSF Standard Edition on UNIX or Linux): LSF administrators are assigned to the lsfadmins user group.
- Affinity scheduling in both lsb.modules and lsb.hosts.

Example

CONFIGURATION_TEMPLATE="HIGH_THROUGHPUT"

Default

DEFAULT (the default configuration template is used)

**EGO_DAEMON_CONTROL**

Syntax

EGO_DAEMON_CONTROL="Y" | "N"

Description

Enables EGO to control LSF res and sbatch. Set the value to "Y" if you want EGO Service Controller to start res and sbatch, and restart if they fail. To avoid conflicts, leave this parameter undefined if you use a script to start up LSF daemons.

Note:

If you specify EGO_ENABLE="N", this parameter is ignored.

Example

EGO_DAEMON_CONTROL="N"

Default

N (res and sbatch are started manually)

**ENABLE_DYNAMIC_HOSTS**

Syntax

ENABLE_DYNAMIC_HOSTS="Y" | "N"

Description

Enables dynamically adding and removing hosts. Set the value to "Y" if you want to allow dynamically added hosts.

If you enable dynamic hosts, any host can connect to cluster. To enable security, configure LSF_HOST_ADDR_RANGE in lsf.cluster.cluster_name after
installation and restrict the hosts that can connect to your cluster.

**Example**

ENABLE_DYNAMIC_HOSTS="N"

**Default**

N (dynamic hosts not allowed)

**ENABLE_EGO**

**Syntax**

ENABLE_EGO="Y" | "N"

**Description**

Enables EGO functionality in the LSF cluster.

ENABLE_EGO="Y" causes `lsfinstall` uncomment LSF_EGO_ENVDIR and sets LSF_ENABLE_EGO="Y" in lsf.conf.

ENABLE_EGO="N" causes `lsfinstall` to comment out LSF_EGO_ENVDIR and sets LSF_ENABLE_EGO="N" in lsf.conf.

Set the value to "Y" if you want to take advantage of the following LSF features that depend on EGO:

- LSF daemon control by EGO Service Controller
- EGO-enabled SLA scheduling

**Default**

N (EGO is disabled in the LSF cluster)

**ENABLE_STREAM**

**Syntax**

ENABLE_STREAM="Y" | "N"

**Description**

Enables LSF event streaming.

Enable LSF event streaming if you intend to install IBM Platform Analytics or IBM Platform Application Center.

**Default**

N (Event streaming is disabled)

**LSF_ADD_SERVERS**

**Syntax**

LSF_ADD_SERVERS="host_name [ host_name...]"
**Description**

List of additional LSF server hosts.

The hosts in LSF_MASTER_LIST are always LSF servers. You can specify additional server hosts. Specify a list of host names two ways:

- Host names separated by spaces
- Name of a file containing a list of host names, one host per line.

**Valid Values**

Any valid LSF host name.

**Example 1**

List of host names:

```
LSF_ADD_SERVERS="hosta hostb hostc hostd"
```

**Example 2**

Host list file:

```
LSF_ADD_SERVERS=:lsf_server_hosts
```

The file `lsf_server_hosts` contains a list of hosts:

```
hosta
hostb
hostc
hostd
```

**Default**

Only hosts in LSF_MASTER_LIST are LSF servers.

**LSF_ADD_CLIENTS**

**Syntax**

```
LSF_ADD_CLIENTS="host_name [host_name...]
```

**Description**

List of LSF client-only hosts.

**Tip:**

After installation, you must manually edit `lsf.cluster.cluster_name` to include the host model and type of each client listed in LSF_ADD_CLIENTS.

**Valid Values**

Any valid LSF host name.
Example 1

List of host names:
LSF_ADDCLIENTS="hoste hostf"

Example 2

Host list file:
LSF_ADDCLIENTS=:\lsf\client\hosts

The file \lsf\client\hosts contains a list of hosts:
hoste
hostf

Default

No client hosts installed.

**LSF_ADMINS**

**Syntax**

LSF_ADMINS="user_name [ user_name ... ]"

**Description**

Required. List of LSF administrators.

The first user account name in the list is the primary LSF administrator. It cannot be the root user account.

Typically this account is named lsfadmin. It owns the LSF configuration files and log files for job events. It also has permission to reconfigure LSF and to control batch jobs submitted by other users. It typically does not have authority to start LSF daemons. Usually, only root has permission to start LSF daemons.

All the LSF administrator accounts must exist on all hosts in the cluster before you install LSF. Secondary LSF administrators are optional.

**CAUTION:**

You should *not* configure the root account as the primary LSF administrator.

**Valid Values**

Existing user accounts

**Example**

LSF_ADMINS="lsfadmin user1 user2"

Default

None—required variable
**LSF_CLUSTER_NAME**

**Syntax**

```
LSF_CLUSTER_NAME="cluster_name"
```

**Description**

Required. The name of the LSF cluster.

**Example**

```
LSF_CLUSTER_NAME="cluster1"
```

**Valid Values**

Any alphanumeric string containing no more than 39 characters. The name cannot contain white spaces.

**Important:**

Do not use the name of any host, user, or user group as the name of your cluster.

**Default**

None—required variable

---

**LSF_DYNAMIC_HOST_WAIT_TIME**

**Syntax**

```
LSF_DYNAMIC_HOST_WAIT_TIME=seconds
```

**Description**

Time in seconds slave LIM waits after startup before calling master LIM to add the slave host dynamically.

This parameter only takes effect if you set `ENABLE_DYNAMIC_HOSTS="Y"` in this file. If the slave LIM receives the master announcement while it is waiting, it does not call the master LIM to add itself.

**Recommended value**

Up to 60 seconds for every 1000 hosts in the cluster, for a maximum of 15 minutes. Selecting a smaller value will result in a quicker response time for new hosts at the expense of an increased load on the master LIM.

**Example**

```
LSF_DYNAMIC_HOST_WAIT_TIME=60
```

Hosts will wait 60 seconds from startup to receive an acknowledgement from the master LIM. If it does not receive the acknowledgement within the 60 seconds, it will send a request for the master LIM to add it to the cluster.
**Default**

Slave LIM waits forever

**LSF_ENTITLEMENT_FILE**

**Syntax**

```
LSF_ENTITLEMENT_FILE=path
```

**Description**

Full path to the LSF entitlement file. LSF uses the entitlement to determine which feature set to enable or disable based on the edition of the product. The entitlement file for LSF Standard Edition is `platform_lsf_std_entitlement.dat`. For LSF Express Edition, the file is `platform_lsf_exp_entitlement.dat`. For LSF Advanced Edition, the file is `platform_lsf_adv_entitlement.dat`. The entitlement file is installed as `<LSF_TOP>/conf/lsf.entitlement`.

You must download the entitlement file for the edition of the product you are running, and set `LSF_ENTITLEMENT_FILE` to the full path to the entitlement file you downloaded.

Once LSF is installed and running, run the `lsid` command to see which edition of LSF is enabled.

**Example**

```
LSF_ENTITLEMENT_FILE=/usr/share/lsf_distrib/lsf.entitlement
```

**Default**

None — required variable

**LSF_MASTER_LIST**

**Syntax**

```
LSF_MASTER_LIST="host_name [host_name ...]"
```

**Description**

Required for a first-time installation. List of LSF server hosts to be master or master candidates in the cluster.

You must specify at least one valid server host to start the cluster. The first host listed is the LSF master host.

During upgrade, specify the existing value.

**Valid Values**

LSF server host names

**Example**

```
LSF_MASTER_LIST="hosta hostb hostc hostd"
```
LSF_QUIET_INST

Syntax

LSF_QUIET_INST="Y" | "N"

Description

Enables quiet installation.
Set the value to Y if you want to hide the LSF installation messages.

Example

LSF_QUIET_INST="Y"

Default

N (installer displays messages during installation)

LSF_SILENT_INSTALL_TARLIST

Syntax

LSF_SILENT_INSTALL_TARLIST="ALL" | "Package_Name ...

Description

A string which contains all LSF package names to be installed. This name list only applies to the silent install mode. Supports keywords ?all?, ?ALL? and ?All? which can install all packages in LSF_TARDIR.

Example

LSF_SILENT_INSTALL_TARLIST="ALL" | "lsf9.1.2_linux2.6-glibc2.3-
x86_64.tar.Z"

Default

None

LSF_TARDIR

Syntax

LSF_TARDIR="/path"

Description

Full path to the directory containing the LSF distribution tar files.

Example

LSF_TARDIR="/usr/share/lsf_distrib"
Default

The parent directory of the current working directory. For example, if `lsfinstall` is running under `usr/share/lsf_distrib/lsf_lsfinstall` the LSF_TARDIR default value is `usr/share/lsf_distrib`.

**LSF_TOP**

**Syntax**

`LSF_TOP="/path"`

**Description**

Required. Full path to the top-level LSF installation directory.

**Valid Value**

The path to LSF_TOP must be shared and accessible to all hosts in the cluster. It cannot be the root directory (`/`). The file system containing LSF_TOP must have enough disk space for all host types (approximately 300 MB per host type).

**Example**

`LSF_TOP="/usr/share/lsf"`

**Default**

None - required variable

**PATCH_BACKUP_DIR**

**Syntax**

`PATCH_BACKUP_DIR="/path"`

**Description**

Full path to the patch backup directory. This parameter is used when you install a new cluster for the first time, and is ignored for all other cases.

The file system containing the patch backup directory must have sufficient disk space to back up your files (approximately 400 MB per binary type if you want to be able to install and roll back one enhancement pack and a few additional fixes). It cannot be the root directory (`/`).

If the directory already exists, it must be writable by the cluster administrator (`lsfadmin`).

If you need to change the directory after installation, edit PATCH_BACKUP_DIR in `<LSF_TOP>/patch.conf` and move the saved backup files to the new directory manually.

**Example**

`PATCH_BACKUP_DIR="/usr/share/lsf/patch/backup"`
**Default**

LSF_TOP/patch/backup

**PATCH_HISTORY_DIR**

**Syntax**

PATCH_HISTORY_DIR="/path"

**Description**

Full path to the patch history directory. This parameter is used when you install a new cluster for the first time, and is ignored for all other cases.

It cannot be the root directory (/). If the directory already exists, it must be writable by lsfadmin.

The location is saved as PATCH_HISTORY_DIR in LSF_TOP/patch.conf. Do not change the directory after installation.

**Example**

PATCH_BACKUP_DIR="/usr/share/lsf/patch"

**Default**

LSF_TOP/patch

**SILENT_INSTALL**

**Syntax**

SILENT_INSTALL="Y" | "N"

**Description**

Enabling the silent installation (setting this parameter to Y) means you want to do the silent installation and accept the license agreement.

**Default**

N
Chapter 9. slave.config

About slave.config

Dynamically added LSF hosts that will not be master candidates are slave hosts. Each dynamic slave host has its own LSF binaries and local lsf.conf and shell environment scripts (cshrc.lsf and profile.lsf). You must install LSF on each slave host.

The slave.config file contains options for installing and configuring a slave host that can be dynamically added or removed.

Use `lsfinstall -s -f slave.config` to install LSF using the options specified in slave.config.

Template location

A template slave.config is located in the installation script directory created when you extract the installer script package. Edit the file and uncomment the options you want in the template file. Replace the example values with your own settings to specify the options for your new LSF installation.

Important:

The sample values in the slave.config template file are examples only. They are not default installation values.

Format

Each entry in slave.config has the form:

```plaintext
NAME="STRING1 STRING2 ...
```

The equal sign `=` must follow each NAME even if no value follows and there should be no spaces around the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Blank lines and lines starting with a pound sign (`#`) are ignored.

Parameters

- EGO_DAEMON_CONTROL
- ENABLE_EGO
- EP_BACKUP
- LSF_ADMINS
- LSF_ENTITLEMENT_FILE
- LSF_LIM_PORT
- LSF_SERVER_HOSTS
- LSF_TARDIR
- LSF_LOCAL_RESOURCES
EGO_DAEMON_CONTROL

Syntax

EGO_DAEMON_CONTROL="Y" | "N"

Description

Enables EGO to control LSF res and sbatchd. Set the value to "Y" if you want EGO Service Controller to start res and sbatchd, and restart if they fail.

All hosts in the cluster must use the same value for this parameter (this means the value of EGO_DAEMON_CONTROL in this file must be the same as the specification for EGO_DAEMON_CONTROL in install.config).

To avoid conflicts, leave this parameter undefined if you use a script to start up LSF daemons.

Note:

If you specify EGO_ENABLE="N", this parameter is ignored.

Example

EGO_DAEMON_CONTROL="N"

Default

N (res and sbatchd are started manually)

ENABLE_EGO

Syntax

ENABLE_EGO="Y" | "N"

Description

Enables EGO functionality in the LSF cluster.

ENABLE_EGO="Y" causes lsfinstall to uncomment LSF_EGO_ENVDIR and sets LSF_ENABLE_EGO="Y" in lsf.conf.

ENABLE_EGO="N" causes lsfinstall to comment out LSF_EGO_ENVDIR and sets LSF_ENABLE_EGO="N" in lsf.conf.

Set the value to "Y" if you want to take advantage of the following LSF features that depend on EGO:

• LSF daemon control by EGO Service Controller
• EGO-enabled SLA scheduling
**EP_BACKUP**

**Syntax**

```
EP_BACKUP="Y" | "N"
```

**Description**

Enables backup and rollback for enhancement packs. Set the value to "N" to disable backups when installing enhancement packs (you will not be able to roll back to the previous patch level after installing an EP, but you will still be able to roll back any fixes installed on the new EP).

You may disable backups to speed up install time, to save disk space, or because you have your own methods to back up the cluster.

**Default**

Y (backup and rollback are fully enabled)

---

**LSF_ADMINS**

**Syntax**

```
LSF_ADMINS="user_name [user_name ...]"
```

**Description**

Required. List of LSF administrators.

The first user account name in the list is the primary LSF administrator. It cannot be the root user account.

Typically this account is named lsfadmin. It owns the LSF configuration files and log files for job events. It also has permission to reconfigure LSF and to control batch jobs submitted by other users. It typically does not have authority to start LSF daemons. Usually, only root has permission to start LSF daemons.

All the LSF administrator accounts must exist on all hosts in the cluster before you install LSF. Secondary LSF administrators are optional.

**Valid Values**

Existing user accounts

**Example**

```
LSF_ADMINS="lsfadmin user1 user2"
```

**Default**

None—required variable
**LSF_ENTITLEMENT_FILE**

**Syntax**

LSF_ENTITLEMENT_FILE=path

**Description**

Full path to the LSF entitlement file. LSF uses the entitlement to determine which feature set to be enable or disable based on the edition of the product. The entitlement file for LSF Standard Edition is platform_lsf_std_entitlement.dat. For LSF Express Edition, the file is platform_lsf_exp_entitlement.dat. The entitlement file is installed as <LSF_TOP>/conf/lsf.entitlement.

You must download the entitlement file for the edition of the product you are running, and set LSF_ENTITLEMENT_FILE to the full path to the entitlement file you downloaded.

Once LSF is installed and running, run the lsid command to see which edition of LSF is enabled.

**Example**

```
LSF_ENTITLEMENT_FILE=/usr/share/lsf_distrib/lsf.entitlement
```

**Default**

None - required variable

---

**LSF_LIM_PORT**

**Syntax**

LSF_LIM_PORT="port_number"

**Description**

TCP service port for slave host.

Use the same port number as LSF_LIM_PORT in lsf.conf on the master host.

**Default**

7869

---

**LSF_SERVER_HOSTS**

**Syntax**

LSF_SERVER_HOSTS="host_name [ host_name ...]"

**Description**

Required for non-shared slave host installation. This parameter defines a list of hosts that can provide host and load information to client hosts. If you do not
define this parameter, clients will contact the master LIM for host and load information. List of LSF server hosts in the cluster to be contacted.

Recommended for large clusters to decrease the load on the master LIM. Do not specify the master host in the list. Client commands will query the LIMs on the LSF_SERVER_HOSTS, which off-loads traffic from the master LIM.

Define this parameter to ensure that commands execute successfully when no LIM is running on the local host, or when the local LIM has just started.

You should include the list of hosts defined in LSF_MASTER_LIST in lsf.conf; specify the primary master host last. For example:

```
LSF_MASTER_LIST="lsfmaster hostE"
LSF_SERVER_HOSTS="hostB hostC hostD hostE lsfmaster"
```

Specify a list of host names two ways:
- Host names separated by spaces
- Name of a file containing a list of host names, one host per line.

**Valid Values**

Any valid LSF host name

**Examples**

List of host names:
```
LSF_SERVER_HOSTS="hosta hostb hostc hostd"
```

Host list file:
```
LSF_SERVER_HOSTS=:lsf_server_hosts
```

The file *lsf_server_hosts* contains a list of hosts:
```
hosta hostb hostc hostd
```

**Default**

None

---

**LSF_TARDIR**

**Syntax**

```
LSF_TARDIR="/path"
```

**Description**

Full path to the directory containing the LSF distribution tar files.

**Example**

```
LSF_TARDIR="/usr/local/lsf_distrib"
```
The parent directory of the current working directory. For example, if `lsfinstall` is running under `/usr/share/lsf_distrib/lsf_lsfinstall` the LSF_TARDIR default value is `/usr/share/lsf_distrib`.

**LSF_LOCAL_RESOURCES**

**Syntax**

```
LSF_LOCAL_RESOURCES="resource ...
```

**Description**

Defines instances of local resources residing on the slave host.

- For numeric resources, define name-value pairs:
  
  "[resourcemap value*resource_name]"

- For Boolean resources, define the resource name in the form:
  
  "[resource resource_name]"

When the slave host calls the master host to add itself, it also reports its local resources. The local resources to be added must be defined in `lsf.shared`.

If the same resource is already defined in `lsf.shared` as default or all, it cannot be added as a local resource. The shared resource overrides the local one.

**Tip:**

`LSF_LOCAL_RESOURCES` is usually set in the `slave.config` file during installation. If `LSF_LOCAL_RESOURCES` are already defined in a local `lsf.conf` on the slave host, `lsfinstall` does not add resources you define in `LSF_LOCAL_RESOURCES` in `slave.config`. You should not have duplicate `LSF_LOCAL_RESOURCES` entries in `lsf.conf`. If local resources are defined more than once, only the last definition is valid.

**Important:**

Resources must already be mapped to hosts in the `ResourceMap` section of `lsf.cluster.cluster_name`. If the `ResourceMap` section does not exist, local resources are not added.

**Example**

```
LSF_LOCAL_RESOURCES="[resourcemap 1*verilog] [resource linux]"
```

**Default**

None

**LSF_TOP**

**Syntax**

```
LSF_TOP="/path"
```
Description

Required. Full path to the top-level LSF installation directory.

Important:

You must use the same path for every slave host you install.

Valid value

The path to LSF_TOP cannot be the root directory (/).

Example

LSF_TOP="/usr/local/lsf"

Default

None—required variable

SILENT_INSTALL

Syntax

SILENT_INSTALL="Y" | "N"

Description

Enabling the silent installation (setting this parameter to Y) means you want to do the silent installation and accept the license agreement.

Default

N

LSF_SILENT_INSTALL_TARLIST

Syntax

LSF_SILENT_INSTALL_TARLIST="ALL" | "Package_Name ...

Description

A string which contains all LSF package names to be installed. This name list only applies to the silent install mode. Supports keywords ?all?, ?ALL? and ?All? which can install all packages in LSF_TARDIR.

Default

None
Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300
2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

### Trademarks

IBM, the IBM logo, and ibm.com® are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at [http://www.ibm.com/legal/copytrade.shtml](http://www.ibm.com/legal/copytrade.shtml).

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

LSF®, Platform, and Platform Computing are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

### Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.
