CNAG Basics
Cluster introduction

Pablo Ródenas Barquero, HPC User Support
cnag_support@bsc.es

Barcelona, January 16th
Aim

• Understand CNAG's cluster design
 ● HPC Cluster: Big and complex machine unlike your desktop

• Not all filesystems are born equal
 ● Parts of the filesystem have specific purposes, strengths and weaknesses

• Learn how to use the cluster adequately
 ● Best practices and rules of thumb

• Learn how software is made available
 ● Module Environment, /apps

• Who to contact?

www.bsc.es/user-support/cnag.php / cnag_support@bsc.es
Cluster Overview
Components

• The cluster consists of:
 ● 2 login nodes
 ● 2 data transfer nodes
 ● 108 GenC nodes (24 cores, 256 GB RAM)
 ● 12 GPU nodes (16 cores, 128 GB RAM, 4 GPUs)
 ● 20 GenB nodes (16 cores, 128 GB RAM)
 ● 1 SMP node (48 cores, 2TB RAM)

• Data is stored in:
 ● 2 NFS exported /home and /apps on all nodes
 ● 2 High Performance Distributed Filesystems (Lustre): /project and /scratch
 ● Local disc on the nodes: /scratch_tmp

• Jobs are executed with:
 ● Slurm Resource Manager (Batch system)
Connecting

• 2 logins:
 ● login1: 172.16.10.20
 ● login2: 172.16.10.21

• Use SSH:
 ● Windows: PuTTY
 ● Linux / Mac: Openssh
 ssh -l user 172.16.10.20
 ● SSH Keys

• You have internet access from the logins, but cannot access logins from the internet (without VPN)
 ● Ask for a VPN to helpdesk@crg.eu
Intended usage

• YES
 - Edit scripts
 - Read results
 - Process text
 - Arrange data on filesystems
 - Launch jobs
 - Download/upload data (careful) → better to use data transfer nodes: dt1 & dt2

• NO
 - Test executions
 - Perform big statistical computation

• Otherwise, **interactive jobs**
Data Transfer

- **scp**
 - Slow, limited

- **lftp**
 - Faster
 - Parallel downloads

- **Aspera**
 - Fastest
 - Limited to certain origins

- Transferences are limited and shared with all users. E.g.: limit your bandwidth and use **data transfer nodes** (dt1 & dt2)
Software

• Cluster wide installations:
 ● System software: utils, default compiler, system libs
 ● Scientific/specific software: /apps

• Several versions of scientific software
 ● Collisions
 ● Dependencies

• Managed by:
 ● Environment Modules

• Default module

• Modules optimized per CPU arch
 ● Load modules inside job!
Environment modules

• **Used with command**
 • module

• **Examples**
 • module load python/2.7.3
 • module purge
 • module load python/2.7.6
 • module unload intel
 • module list
 • module avail
Why do it need to load modules?

- HPC environment different from your local computer
- Different versions of the same program
- Currently, around 400 different tools, apps, compilers or libraries… and growing
What modules can I use?

- module avail python

```
[rramos@login1 ~]$ module av python

--------------------------------- /apps/modules/modulefiles/tools  -------
PYTHON/2.7.11(default) PYTHON/2.7.3 PYTHON/3.4.3 PYTHON/3.6.0
PYTHON/2.7.14 PYTHON/2.7.6 PYTHON/3.5.1 PYTHON/3.6.3
```

```
[rramos@login1 ~]$ module av atac-dnase-pipeline
[rramos@login1 ~]$ module av ATAC-DNASE-PIPELINE
[rramos@login1 ~]$ module av ATAC

--------------------------------- /apps/modules/modulefiles/applications -
ATAC_DNASE_PIPELINE/2016.11.14
```

- Still can’t find the software? Maybe you didn’t get the spelling right. Take a ride into /apps ($ ls -l /apps/)
Lustre Filesystem
What is Lustre

• A High Performance Parallel Distributed Filesystem
 ● High Performance → Fast access
 ● Parallel → Many different processes in different computers can access the same file
 ● Distributed → Many different servers holding different parts of the same file, working together

• Meaning: Formula 1, not a 4WD
Lustre recommended usage

- No more than 1000 files per directory (directories count as files). Otherwise, access performance will be affected.
- Avoid many small files (< 4 MB)
- Do not create and delete lots of small files during execution (use $TMPDIR)
- Do not use find → use lfs find
- Do not 'rm -r *' → use 'lrm <path>' (module load bsc)
- Specify $TMPDIR whenever possible (java -io.tmpdir=; sort -T; vcf tools --temp; ...)

Lustre Commands

• Finding files
 - lfs find /scratch/devel/… -name ".*fastq.gz"

• Listing files
 - lfs ls /scratch/devel/…/*.gz

• Deleting files
 - rm -f /path/to/file
 - rm -rf /scratch/devel/.../*/*. #NEVER!

• Seeing your quota
 - lquota

$ lquota

Disk quotas for user user_support (uid 40171):

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>used</th>
<th>quota</th>
<th>limit</th>
<th>grace</th>
<th>files</th>
<th>quota</th>
<th>limit</th>
<th>grace</th>
</tr>
</thead>
<tbody>
<tr>
<td>/project</td>
<td>10.1T*</td>
<td>10T</td>
<td>12T</td>
<td>6d5h10m</td>
<td>7509</td>
<td>207508</td>
<td>407508</td>
<td>-</td>
</tr>
<tr>
<td>/scratch</td>
<td>1.254G</td>
<td>20T</td>
<td>24T</td>
<td>-</td>
<td>26</td>
<td>200026</td>
<td>400026</td>
<td>-</td>
</tr>
</tbody>
</table>
Access times per storage type

• Applicable to CNAG cluster

<table>
<thead>
<tr>
<th>Access</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lustre /scratch</td>
<td>1 u</td>
</tr>
<tr>
<td>/scratch_tmp</td>
<td>4 u</td>
</tr>
<tr>
<td>Lustre /project</td>
<td>~5 u</td>
</tr>
<tr>
<td>NFS (/home)</td>
<td>192 u</td>
</tr>
</tbody>
</table>

*Numbers approximated/estimated
What is Slurm

- **Batch Scheduler**
 - Manages resources (compute nodes)
 - Defines set of resources associated to execution
 - Enforce limits
 - Schedule execution once resources are available

- **Cluster divided in partitions**
 - Main → Default partition
 - GenB → GenB nodes
 - Gpu → GPU nodes
 - Interactive → interactive jobs
 - SMP → SMP node
Slurm Concepts

• **Partition**
 - Group of resources. Usually a common set of limits or capabilities.

• **QOS**
 - An indication on the priority for a job. Usually has a time or amount limit.

• **Job**
 - A script with a defined execution purpose that requests a determined amount of resources for a determined amount of time in a specific partition and queue.

• **JobArray**
 - A set of jobs sharing logic but differing in some parameter or input.
CNAG's partitions
Queue tools

- **List jobs in queue**
 - mnq / squeue

- **Submit job**
 - mnsSubmit / sbatch
 - MPI → srun

- **Cancel job**
 - mncancel / scancel

- **Interactive node**
 - mnsh

- **See older jobs**
 - sacct
Sequential job

```bash
#!/bin/bash
# @ job_name = test_serial
# @ initialdir = .
# @ output = serial_%j.out
# @ error = serial_%j.err
# @ total_tasks = 1
# @ wall_clock_limit = 00:02:00

module purge
module load python
module load perl

./serial_binary > serial.out
```
Extracting past execution data

- User jobs’ details
 - `sacct -u <user> --long`

- Show memory stats
 - `sacct -u <user> -o "jobid,maxrss,alloccpus,elapsed,state"`

- Show jobs in certain timeframe
 - `sacct -S2016-03-16 -E2016-03-20`

- Show jobs run in certain hardware
 - `sacct -N cnc1`

- Show jobs that timed out
 - `sacct -u <user> --state TIMEOUT -S2016-04-04 -X`
Data management best practices
Data management tips

• Avoid intermediate steps
 - Use bash pipelines
 - ./do_stuff | ./manage_stuff_1 | … | ./manage_stuff_N > out

• Avoid replicating data

• Compress as much data as possible
 - Standard compression
 - tar -cvf name.tar.gz <path_to_file>
 - Parallel compression → ++faster (Not in login nodes!)
 - tar -cvf <path_to_file> | pigz -p N_PROC > name.tar.gz

• No need to untar every time
 - zcat, zless, zgrep, zdiff
Rules of thumb for getting in contact with us
Need some fresh software? Please, be specific

• Need a new package?
 ● Specify link
 - Python:
 [link](https://pypi.python.org/pypi)
 - R:
 [link](https://www.bioconductor.org/)
 [link](https://cran.r-project.org/)
 ● Specify version ($module avail python)

• Need a new bleeding edge software that some random bioinformatician locked at his own house created?
 ● Specify the link
Panic: something is not working

• Did you google it? Kidding… but not kidding
Panic: something is not working

• Did you check StackOverflow?
Panic: something is not working with my job

• Specify:
 ● Job id
 ● Working dir
 ● The code you are trying to execute
 – Exact steps
 – Modules loaded
 – Any information about the use case is helpful
 – A simple test case to reproduce the behaviour is very helpful for difficult cases
Panic: something is not working in the cluster

• Unexpected cluster behaviour?
 ● Where?
 – /scratch or /project or /home…
 ● When? As specific as possible with the timing
 – Working late at night running to meet paper deadline?
 – Morning bustle? Maybe somebody is being naughty
Thank you!

For further information please contact cnag_support@bsc.es
https://www.bsc.es/user-support/cnag.php