CNAG Basics
Cluster introduction

Rubén Ramos, HPC Support
cnag_support@bsc.es

Barcelona, April 26th
Aim

- Understand CNAG's cluster design
 - HPC Cluster: Big and complex machine unlike your desktop

- Not all filesystems are born equal
 - Parts of the filesystem have specific purposes, strengths and weaknesses

- Learn how to use the cluster adequately
 - Best practices and rules of thumb

- Learn how software is made available
 - Module Environment, /apps

- Who to contact?
 - www.bsc.es/user-support/cnag.php / cnag_support@bsc.es
Cluster Overview
The cluster consists of:

- 2 login nodes
- 108 GenC nodes (24 cores, 256 GB RAM)
- 12 GPU nodes (16 cores, 128 GB RAM)
- 20 GenB nodes (16 cores, 128 GB RAM)
- 94 GenA nodes (8 cores, 48 GB RAM)
- 1 SMP node (48 cores, 1TB RAM)

Data is stored in:

- 1 NFS exported /home on all nodes
- 1 NFS exported /apps on all nodes
- 2 High Performance Distributed Filesystems (Lustre)

Jobs are executed with:

- Slurm Resource Manager (Batch system)
Connecting

2 logins:
- login1: 172.16.10.20
- login2: 172.16.10.21

Use SSH:
- Windows: PuTTY
- Linux / Mac: Openssh
 ssh -l user 172.16.10.20
- SSH Keys

You have internet access from the logins, but cannot access logins from the internet (without VPN)
Intended usage

YES
- Edit scripts
- Read results
- Process text
- Arrange data on filesystems
- Launch jobs
- Download/upload data (careful)

NO
- Test executions
- Perform big statistical computation

Otherwise, interactive jobs
Data Transfer

- **scp**
 - Slow, limited

- **lftp**
 - Faster
 - Parallel downloads

- **Aspera**
 - Fastest
 - Limited to certain origins

- Transferences are limited and shared with all users. E.g.: limit your bandwidth
Environment
Software

Cluster wide installations:
- System software: utils, default compiler, system libs
- Scientific/specific software: /apps

Several versions of scientific software
- Collisions
- Dependencies

Managed by:
- Environment Modules

Default module (latest)

Modules optimized per CPU arch
- Load modules inside job!
Environment modules

- Used with command
 module

- Examples
 module load python/2.7.3
 module purge
 module load python/2.7.6
 module unload intel
 module list
 module avail
What is Lustre

A High Performance Parallel Distributed Filesystem

- High Performance → Fast access
- Parallel → Many different processes in different computers can access the same file
- Distributed → Many different servers holding different parts of the same file, working together

Meaning: Formula 1, not a 4WD
Lustre recommended usage

- No more than 1000 files per directory (directories count as files). Otherwise, access performance will be affected.
- Avoid many small files (< 4 MB)
- Do not create and delete lots of small files during execution (use $TMPDIR)
- Do not use find → use lfs find
- Do not 'rm -r *' → use 'lrm <path>' (module load bsc)
- Specify $TMPDIR whenever possible (java -io.tmpdir=; sort -T; vcftools --temp; ...)

Lustre Commands

Finding files
lfs find /scratch/devel/... -name ".fastq.gz"

Listing files
lfs ls /scratch/devel/.../*.gz

Deleting files
rm -f /path/to/file
rm -rf /scratch/devel/.../*/*.* #NEVER!

Seeing your quota
lquota
$lquota
Disk quotas for user user_support (uid 40171):

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>used</th>
<th>quota</th>
<th>limit</th>
<th>grace</th>
<th>files</th>
<th>quota</th>
<th>limit</th>
<th>grace</th>
</tr>
</thead>
<tbody>
<tr>
<td>/project</td>
<td>10.1T*</td>
<td>10T</td>
<td>12T</td>
<td>6d5h10m</td>
<td>7509</td>
<td>207508</td>
<td>407508</td>
<td>-</td>
</tr>
<tr>
<td>/scratch</td>
<td>1.254G</td>
<td>20T</td>
<td>24T</td>
<td>-</td>
<td>26</td>
<td>200026</td>
<td>400026</td>
<td>-</td>
</tr>
</tbody>
</table>
Access times per storage type

Applicable to CNAG cluster

<table>
<thead>
<tr>
<th>Access</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lustre /scratch</td>
<td>1 u</td>
</tr>
<tr>
<td>/scratch_tmp</td>
<td>4 u</td>
</tr>
<tr>
<td>Lustre /project</td>
<td>~5 u</td>
</tr>
<tr>
<td>NFS (/home)</td>
<td>192 u</td>
</tr>
</tbody>
</table>

Numbers approximated/estimated
Batch System (Slurm)
What is Slurm

Batch Scheduler

- Manages resources (compute nodes)
- Defines set of resources associated to execution
- Enforce limits
- Schedule execution once resources are available

Cluster divided in partitions

- Main → Default partition
- GenB → GenB nodes
- GenA → GenA nodes
- Gpu → GPU nodes
- Interactive → interactive jobs
- SMP → SMP node
Slurm Concepts

Partition
- Group of resources. Usually a common set of limits or capabilities.

QOS
- An indication on the priority for a job. Usually has a time or amount limit.

Job
- A script with a defined execution purpose that requests a determined amount of resources for a determined amount of time in a specific partition and queue.

JobArray
- A set of jobs sharing logic but differing in some parameter or input.
CNAG's partitions
Queue tools

- List jobs in queue
 - mnq / squeue

- Submit job
 - Mンsubmit / sbatch
 - MPI → srun

- Cancel job
 - mncancel / scancel

- Interactive node
 - mnsh

- See older jobs
 - sacct
Sequential job

```bash
#!/bin/bash
# @ job_name = test_serial
# @ initialdir = .
# @ output = serial_%j.out
# @ error = serial_%j.err
# @ total_tasks = 1
# @ wall_clock_limit = 00:02:00

module purge
module load python
module load perl

./serial_binary > serial.out
```
Extracting past execution data

User jobs’ details

```
sacct -u <user> --long
```

Show memory stats

- `sacct -u <user> -o "jobid,maxrss,alloccpu,elapsed,state"

Show jobs in certain timeframe

- `sacct -S2016-03-16 -E2016-03-20`

Show jobs run in certain hardware

- `sacct -N cnc1`

Show jobs that timed out

- `sacct -u <user> --state TIMEOUT -S2016-04-04 -X`
Data Management Best practices
Data management tips

Avoid intermediate steps
• Use bash pipelines
 – ./do_stuff | ./manage_stuff_1 | ... | ./manage_stuff_N > out

Avoid replicating data

Compress as much data as possible
• Standard compression
 – `tar -cvf name.tar.gz <path_to_file>`
• Parallel compression → ++faster (Not in login nodes!)
 – `tar -cvf <path_to_file> | pigz -p N_PROC > name.tar.gz`

No need to untar every time
• `zcat`, `zless`, `zgrep`, `zdiff`
Thank you!

For further information please contact cnag_support@bsc.es
http://www.bsc.es/user-support/cnag.php