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PLASMAS

Plasma is loosely described as an electrically 
neutral medium of positive and negative particles. !
!
Although particles are unbound, they are not 
‘free’. When the charges move they generate 
electrical currents with magnetic fields, and as a 
result, they are affected by each other’s fields. 
These nonlinear interactions govern their collective 
behavior with many degrees of freedom.!
!

!
PLASMA TURBULENCE
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FUSION ENERGY: ITER and beyond

ITER

Helical magnetic fields can be used to 
confine hot plasmas long enough to 

produce energy

Turbulence dominates radial losses of 
energy and particles

GYRO, General Atomics

W7-X



MOTIVATION
FACT: Turbulence dominates radial transport in tokamaks and stellarators. Thus, it 
determines how large a device must be to produce energy by fusion in an economically 
attractive way. 
!
!
!
!
!
!
!
!
!
!
!
FACT: Traditionally, one simply estimates effective transport coefficients that encapsulate 
the overall effect of turbulence on confinement, while ignoring the smaller/shorter scale 
physics of turbulence. 
!
FACT: Most first-principle turbulent simulations are run for short periods of time, 
assuming that profile modification (i.e., transport) is irrelevant to calculate these 
coefficients. 
!
Engineering QUESTION: is this the optimal way to design a reactor?  
Physics QUESTION: do we really understand what is going on? 
!

GYRO, General Atomics



EFFECTIVE TURBULENT DIFFUSION: 
when does it work?

Assumes:	


!
Characteristic scales	


!
!
Lack of memory
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Lagrangian trajectories

EFFECTIVE TURBULENT DIFFUSION: 
mathematical assumptions

[See: R. Balescu, “Aspects of Plasma Turbulent 
Transport”, IOP, Bristol (2005) ]
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Characteristic Scales	
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Lack of Memory
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Transport scales are not necessarily 
turbulent decorrelation scales!

From point (Eulerian) probe data, both a 
finite decorrelation length (i.e., typical 
length scale) and a finite decorrelation time  
(i.e., typical time scale and thus no long-
term memory) are obtained for turbulence.	


 	


!
But are turbulent decorrelation scales the 
ones characteristic of the transport 
process?

[See: G.R. McKee et al, 
            IEEE Tran. Plasma Sci. (2002) ]

Apparently not always.	


!
Two cases have been identified:	


!
!
	

 Near-marginal turbulence	


	

 With strong sheared flows present	


!
!
Both relevant in reactor conditions!



Is there any evidence from the 
experiments?

Radial avalanches whose size is limited by 
the tokamak minor radius seem to be 

present in the ECE diagnostic?

[See: P. Politzer et al, 
            Physics of Plasmas 9,1962 (2002) ]



Is there any evidence from the 
experiments?

Temporal correlations beyond local 
turbulent timescales seem apparent in 

Langmuir probe data.

[See: R. Sanchez, B.Ph. van Milligen, et al, 
            Physical Review Letters 90,185005 (2003) ]



Stable distributions: Levy pdfs

P{�,0,⇥} � |x|�(1+�) Gaussian:  α = 2
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[See: G. Samorodnitsky and M. Taqqu, 
“Stable non-Gaussian distributions”, 
Chapman and Hall, New York (1994) ]



LAGRANGIAN MEMORY

Levy distribution

α = 1.2

Gauss distribution

α = 2.0

Η=1/α, random;   Η > 1/α, correlated positively; Η < 1/α, correlated negatively
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[See: B.B. Mandelbrot and J.W. van Ness, 
SIAM Review 10, 422 (1968); I. Calvo and 
R. Sanchez, J. Phys. A 32, 055003 (2009) ]

[See: H.E. Hurst, Trans. Am. Soc. Civ. Eng.  
110, 770 (1951)] ]

H, Hurst exponent
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No!

Yes!

Fractional Transport equations

Standard Transport equations

“Complex” EFFECTIVE TRANSPORT

Spatio-temporal	


correlations

Lack of	


 typical scales	



Lack of memory Typical scales	



[See: R. Sanchez, B.ph. van Milligen, B.A. 
Carreras and D.E. Newman,  

Physical Review E 74, 016305 (2006) ]
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[See: I.Podlubny, Fractional Differential 
Equations,  Academic Press (1998)] 

SPATIAL FRACTIONAL DERIVATIVES: 
NONLOCAL OPERATORS 

J.  Liouville 
(1809-1882) 

G.F. Riemann 
(1826-1866) 

G.W. Leibnitz 
 (1646-1716) 

RIESZ 
fractional 
derivative 

RIEMANN-
LIOUVILLE 

fractional derivative 



TURBULENT TRANSPORT ACROSS 
STABLE SHEARED FLOWS

ITER tokamak, CEA, France

The appearance of stable sheared flows driven by 
turbulence is an example of self-organization and 
emergence of complex dynamics in many systems. 
!
In plasmas, (mostly) poloidal flows with radial shear 
appear naturally at the plasma edge beyond a 
certain threshold power. 
!
These flows allow access to enhance confinement 
regimes (H-mode). ITER will operate in this regime.

Fluid resistive interchange  
turbulence (cylinder) 

[See: B.A. Carreras et al, Phys. Fluids B 5 (1993) 1491] 

Toroidal ITG gyro-kinetic simulations 

[See: Z. Lin et al, Science 281 (1998) 1835] 
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REDUCTION OF TURBULENT 
TRANSPORT ACROSS RADIALLY-
SHEARED POLOIDAL FLOWS

Can reduced transport coefficients 
describe this process?	



ITER and other devices rely on 
sheared flows to tame turbulence 
and access enhanced 
confinement regimes
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NATURE OF TURBULENT TRANSPORT ACROSS 
RADIALLY-SHEARED POLOIDAL FLOWS 

Ion-temperature-gradient (ITG) turbulence 
simulations realized with the UCAN code. 

UCAN characteristics: 

•  δf-method  
•  Particle-in-Cell (PIC) 
•  kinetic ions, adiabatic electrons 
•  global, toroidal geometry  
•  collisionless 
•  electrostatic 
•  low-β"

PHYSICAL PARAMETERS (DIIID–like): 

•   Central ion/electron temp [Kev]: 0.68/0.68 
•   Magnetic field [T]: 1.8 
•   Axis density [x1020m-3]: 0.2 
•   Major/minor radius [m]: 2.5/0.56 
•   Ion Larmor radius [mm]: 2.85 
•   Temporal length of simulation [ms]: 5.56 

RUN parameters: 

•   512x512x256 ions 
•   256x256x128 spatial grid points 
•   8 particles/cell 

[See:  R. Sydora et al, Pl. Phys.  
          Contr. Fusion 38, A281 (1996)] 

Most of the results shown have been obtained at the AMD-Penguin Computing Cluster ‘Pacman’ at the Arctic 
Region Supercomputer Center in Alaska, as well as the IBM iDataPlex with Intel Sandy Bridge processors ‘Mare 
Nostrum III’ at the Barcelona Supercomputer Center in Spain.	



 



GYROKINETIC EQUATIONS IN UCAN 

Poisson equation: electrostatic potential

Method of characteristics: follow ion markers in phase space

Ion distribution function equation



PARALLELIZATION IN UCAN 

UCAN parallelizes spatially, not over particles.	


!
First version, UCAN, only parallelized toroidally, so that 
each processor handled a toroidal section.	


!
UCAN2 applies domain decomposition techniques to each 
toroidal section, that can be now divided among processors	


!
Marker ions are passed from one processor to another, as 
they exit the spatial region controlled by the first processor 
and enter the region controlled by the second processor	


!
Communication happens mostly whenever particles change 
spatial domains, or when Poisson solves are done.



UCAN2 Parallel Scaling Studies

Scaling results have been obtained mostly 
on the Cray XC30 ‘Edison’ at NERSC, but 
also on the Cray XE6 and the IBM iDataPlex 
at NERSC, as well as the IBM iDataPlex with 
Intel Sandy Bridge processors ‘Mare 
Nostrum III’ at the Barcelona 
Supercomputer Center in Spain.	



 



Ion trajectories 

The spatial part of the characteristic along which 
markers are pushed gives the gyro-averaged ion 
orbit in real space: 

Parallel motion 

ExB drifts 
magnetic drifts 

r vs time θ vs time r-θ Poincare plot 



SATURATED PHASE 

Sheared poloidal 
(zonal) flow 



PROPAGATORS AS DIAGNOSTICS

Propagators are very easy to construct numerically by using particles/tracers/
markers. Comparison with analytic expressions may yield transport exponents.

Propagators are the solutions of any differential equation 
starting from a    -function initial condition. �



α∼1.4

COMPLEX CROSS-FLOW TRANSPORT

Spatio-temporal	


correlations

Lack of	


 typical scales	





preferential vorticity sign 
 + 

 eddy tilting towards strongest flow

PHYSICS OF SUBDIFFUSION

Spatio-temporal	


correlations



PHYSICS OF SUBDIFFUSION

Subdiffusion set by mean shear profile, not a complex 
phenomenon in a dynamical sense. It is caused by the 
underlying landscape in which particles move.



PHYSICS OF NON-GAUSSIANITY

Lack of	


 typical scales	



Predator-prey dynamics between fluctuations of turbulence and 
fluctuations in the shear of the flow



Ion Heat flux 

PHYSICS OF NON-GAUSSIANITY (II)

Effective diffusion provides good description when coupling between 
zonal flow and fluctuations artificially suppressed.

Typical scales	


DO exist



Publications



On-going project: stellarators 
and quasi-symmetries @ BSC

Stellarator design strategies are currently based on 
reducing neoclassical collisional transport by 
numerically looking for quasi-symmetries of the 
confining magnetic field. 
!
Quasi-symmetries are hidden symmetries of the 
magnitude of the magnetic field when written in 
Boozer coordinates. These are non-geometrical 
coordinates, so QS configurations do not look 
symmetric to the naked eye. 
!
Turbulent transport has been theorized to improve in 
QS configurations, mostly due to the reduced 
neoclassical viscosities that should allow for the 
self-consistent generation of poloidal flows. 
!
On-going project tries to determine the nature of 
transport as a function of the degree of QS of the 
configuration. 
!
IPP’s GENE/GIST code is used, since it can handle 
a general 3D geometry.
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