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Introduction
Part I: Scalable solvers

• This work grounds on our recent e�ortsú,† towards the development of
highly scalable domain decomposition linear solvers for FE analysis

• These codes rely on a novel implementation of Balancing Domain
Decomposition by Constraints (BDDC) preconditioning

• Scalability systematically assessed for 3D elliptic PDEs (Poisson,
Elasticity) with remarkable results (e.g., weakly scales up to > 370K
IBM BG/Q cores)

ú S. Badia, A. F. Mart́ın and J. Principe. A highly scalable parallel implementation of
balancing domain decomposition by constraints. SIAM J. Sci. Comput. Vol. 36(2), pp.
C190-C218, 2014.
† S. Badia, A. F. Mart́ın and J. Principe. On the scalability of inexact balancing domain
decomposition by constraints with overlapped coarse/fine corrections. Submitted, 2014.
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Introduction
Part II: Multiphysics solvers

• Final goal is extreme-scale multiphysics solvers based on recursive

block-preconditioningú, where highly scalable one-physics solvers are the
building blocks

• In the road to more complex problems, some experiences with
BDDC-based parallel solvers for incompressible flows† (continuous
pressure spaces)

ú S. Badia, A. F. Mart́ın and R. Planas. Block recursive LU preconditioners for the thermally
coupled incompressible inductionless MHD problem. Journal of Computational Physics, Vol.
274, pp. 562-591, 2014.
† S. Badia, and A. F. Mart́ın. Balancing domain decomposition preconditioning for the
discrete Stokes problem with continuous pressures. In preparation, 2014.
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Domain Decomposition
• Let us consider a symmetric, coercive problem (e.g., thermal or

elasticity problem) in ⌦

• We can approximate the problem using Finite Elements, via a
triangulation T (⌦)

• Algebraic problem: Find

x œ Rn : Ax = b,

A is a large, sparse, and symmetric positive definite (also for nonsym.)

Motivation:
E�cient exploitation of distributed-memory
machines for large scale FE problems ∆
Domain decomposition framework
: interior DoFs (I); : interface dofs (�)
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Preconditioned iterative solvers

Preconditioned iterative solvers are the only
scalable choice on (> 100Kcores)

• matvec and aplyprec per iteration
• Key ingredient: preconditioner M

≠1

• E.g., M

≠1 = A

≠1, sol’on in 1 iteration
• Weak scaling (facing ever-increasing

scales)
• No preconditioning: blow-up iterations!
• Local preconditioners (NN) without

global coupling idem

PCG (Ax = f)
r0 := f ≠ Ax0
z0 := M

≠1
r0

p0 := z0
for j = 0, . . . , till CONV do

sj+1 = Apj
. . .
zj+1 := M

≠1
rj+1

. . .
end for

fixed N/P with P ø

4 / 34



Preconditioned iterative solvers

Preconditioned iterative solvers are the only
scalable choice on (> 100Kcores)

• matvec and aplyprec per iteration
• Key ingredient: preconditioner M

≠1

• E.g., M

≠1 = A

≠1, sol’on in 1 iteration
• Weak scaling (facing ever-increasing

scales)
• No preconditioning: blow-up iterations!
• Local preconditioners (NN) without

global coupling idem

PCG (Ax = f)
r0 := f ≠ Ax0
z0 := M

≠1
r0

p0 := z0
for j = 0, . . . , till CONV do

sj+1 = Apj
. . .
zj+1 := M

≠1
rj+1

. . .
end for

 0

 50

 100

 150

 200

 250

 300

 350

 400

12 48 108 192 300 432 588 768

N
um

be
r o

f P
C

G
 it

er
at

io
ns

 fo
r t

he
 in

te
rfa

ce
 p

ro
bl

em

#subdomains

stopc=res+res. rtol=1.0e-06. atol=0.0. Weak scaling with H/h=256

CG no preconditioning
NN preconditioner

fixed N/P with P ø
4 / 34



BDDC Balancing DD by constraints

Idea: Solve problem w/ reduced continuity
• Find x̃ œ Rñ such that:

Ãx̃ = I

t
r

and obtain z = MBDDC r = E I x̃

•
Ã is a sub-assembled global matrix (only
assembled the red corners)

•
I : Ṽh ≠æ Vh is an injection
(weight, comm and add)

• E is the harmonic extension operator
(local problems to make interior residual
zero)

Vh

I I

t

Ṽh 5 / 34



BDDC preconditioning
• Let Ṽh = [ṽ ṽ ] and decompose Ṽh as

Ṽh = ṼF ü ṼC , with
;

ṼF = [ṽ 0]
ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F ) and coarse-grid (x̃C ) correction

Fine-grid correction (x̃F )
• Find x̃F œ Rñ such that

Ãx̃F = I

t
r , constrained to (x̃F ) = 0

• Equivalent to P independent problems

Find x̃

(i)
F œ Rñ(i) such that

A

(i)
x̃

(i)
F = I

t
i r , constrained to (x̃ (i)

F ) = 0

Ṽh
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ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F ) and coarse-grid (x̃C ) correction

Coarse-grid correction (x̃C)
Computation of ṼC = span{�1,�2, . . . ,�nC }

• Find � œ Rñ◊nC such that

Ã�̃ = 0, constrained to � = I

• Equivalent to P independent problems
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BDDC coarse corner function

Circle domain partitioned into 9
subdomains

�j (ṼC ’s basis vector)
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BDDC preconditioning
• Let Ṽh = [ṽ ṽ ] and decompose Ṽh as

Ṽh = ṼF ü ṼC , with
;

ṼF = [ṽ 0]
ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F ) and coarse-grid (x̃C ) correction

Coarse-grid correction (x̃C)
Assembly and solution of coarse-grid problem

AC = assembly(�t
A

(i)�), Solve AC –c = �t
I

t
r , x̃C = �–C

Coarse-grid problem is
• Global, i.e. couples all subdomains
• But much smaller than original Schur complement S (size nC)
• Potential loss of parallel e�ciency with P
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Coarse dof’s definition
Key aspect: Selection of coarse dofs, i.e. continuity among subdomains

• Weak scalability (Ÿ(MBDDC A) constant for fixed N/P and ø P)

•
N/P large in practice ≥ O(104≠5)

• BDDC(ce) and BDDC(cef) require much less iterations in 3D

• But at the expense of a more costly coarse-grid problem

Coarse dofs vs. Ÿ(MBDDC A): d = 2 d = 3

Continuity on corners
#
1 + d

≠1log2 ! N
P

"$ N
P

#
1 + d

≠1log2 ! N
P

"$

Continuity of mean value on edges too
#
1 + d

≠1log2 ! N
P

"$ #
1 + d

≠1log2 ! N
P

"$

Continuity of mean value on faces too -
#
1 + d

≠1log2 ! N
P

"$
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BDDC coarse edge function

Circle domain partitioned into 9
subdomains

�j (ṼC ’s basis vector)
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Outline

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC
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Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2) always exploited in BDDC implementations
• Let us see how to exploit (3), in order to reduce synchronization and

boost scalability (overlapped implementation)
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Overlapped implementation
Typical parallel implementation

Highly-scalable parallel implementation

global communication

fine-grid
correction

coarse-grid
correction

co
re 

1
co

re 
2

co
re 

3
co

re 
4

co
re 

P
TC

TF

time

idling

main MPI communicator

• All MPI tasks have f-g duties and
one/several have also c-g duties

• Computation of f-g/c-g duties
serialized (but they are independent!)

• TC Ã O(P2) æ idling ƒ PTC

• mem Ã O(P
4
3 ) æ mem per core

rapidly exceeded

• MPI tasks have either f-g OR c-g
duties

• f-g/c-g corrections OVERLAPPED in
time (asynchronous)

• c-g tasks can be MASKED with f-g
tasks duties

• MPI-based or OpenMP-based (this
work) solutions are possible for c-g
correction
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Overlapping regions

Fine-grid tasks Coarse-grid task
Identify local coarse DoFs

Construct GAC (Global comm’on)

Symb fact(G
A(i)

F
) O(n

4
3
i ) Symb fact(GAC ) O(P

4
3 )

Symb fact(G
A(i)

II
) O(n

4
3
i )

Num fact(A(i)
F ) O(n2

i )

Compute �i O(n
4
3
i )

A(i)
C := �t

i A
(i)�i

Gather A(i)
C (Global comm’on)

Num fact(A(i)
II ) O(n2

i ) AC := assble(A(i)
C )

x0 := x0 ≠ A≠1
II r0 O(n

4
3
i ) Num fact(AC ) O(P2)

r0 := b ≠ Ax0 O(n
4
3
i )

r (i) := It
i r

r (i)C := �t
i r

(i)

Gather r (i)C (Global comm’on)
rC := assble(r (i)C )

Compute s(i)F O(n
4
3
i ) Solve AC zC = rC O(P

4
3 )

Scatter zC into z(i)
C (Global comm’on)

s(i)C := �i z(i)
C

z(i) := Ii (s(i)F + s(i)C )

Solve Ax = b w/ BDDC-PCG

Precond’er set-up (MBDDC)
call PCG(A,MBDDC,b,x0)

PCG
r0 := b ≠ Ax0
z0 := M

≠1
BDDCr0

p0 := z0
for j = 0, . . . , till CONV do

sj+1 = Apj
. . .
zj+1 := M

≠1
BDDCrj+1

. . .
end for
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C (Global comm’on)

s(i)C := �i z(i)
C

z(i) := Ii (s(i)F + s(i)C )

• Classify fine/coarse duties

• Map duties to f/c
columns (+ synchro.)

• 3 overlapping regions (!)

• ALL coarse duties can be
masked (!)
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FEMPAR Software

FEMPAR (in-house developed HPC software, free software GNU-GPL):
Finite Element Multiphysics PARallel software

• Massively parallel sw for FE simulation of multiphysics PDEs

• Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (Part II)

• Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC
æ hybrid MPI/OpenMP implementation

• Relies on highly-e�cient vendor implementations of the dense/sparse
BLAS (Intel MKL, IBM ESSL, etc.), and interfaces to external
multi-threaded sparse direct solvers (PARDISO, HSL MA87, etc.) and
serial AMG preconditioners (HSL MI20)

• Free-software initiative funded by the ERC via a Proof of Concept Grant
2014
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Weak scalability for 3D Poisson

Target machine: HELIOS@IFERC-CSC
4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs; 64GB)

• Target problem: ≠�u = f on ⌦ = [0, 2] ◊ [0, 1] ◊ [0, 1]

• Uniform global mesh (Q1 FEs) + Uniform partition (cubic local meshes)

• 8, 432, . . . , 27648 cores for fine duties

• Direct solution of Dirichlet/Neumann/coarse problems (PARDISO)

• Entire 16-core blade for coarse-grid duties (multi-threaded PARDISO)

• Gradually larger local problem sizes: H
h = 303, 403 FEs/core

16 / 34



Weak scaling BDDC(corners+edges)
BDDC(corners+edges) :: Poisson problem
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H/h3=303 (27K) FEs/core
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Outline

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC
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Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2)-(3) already exploited in our overlapped BDDC implementations
• Let us see how to exploit (4), in order to boost scalability further

(overlapped/inexact implementation)
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Inexact BDDC

• Exact (using direct solvers) BDDC is a very e�ective preconditioner

• But also a computationally/memory demanding one

• To reduce both demands, solve approximately internal problems (e.g.,
AMG)

• Numerical analysis: inexact BDDC also algorithmically scalable
[Dohrmann, 2007]

• Benefit has to be viewed in light of future parallel architectures: the
most scalable architectures (e.g., IBM BG) will have more limited
memory per core

• Further, the coarse solver time increases as P instead of P

2, much less
degradation for high core counts (due to linear complexity)
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• Benefit has to be viewed in light of future parallel architectures: the
most scalable architectures (e.g., IBM BG) will have more limited
memory per core

• Further, the coarse solver time increases as P instead of P

2, much less
degradation for high core counts (due to linear complexity)
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Weak scalability for 3D Poisson

Target machine: JUQUEEN@JSC
28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

• Target problem: ≠�u = f on ⌦ = [0, 2] ◊ [0, 1] ◊ [0, 1]

• Uniform global mesh (Q1 FEs) + Uniform partition (cubic local meshes)

• 8, 432, . . . , 93312 cores for fine duties

• Serial AMG preconditioners (HSL MI20)

• 1 core for coarse-grid duties

• Fixed local problem size H
h = 603 FEs/core
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Weak scaling inexact BDDC(c+e)
Inexact BDDC(corners+edges) :: Poisson problem, H

h = 60 (216K FEs/core)
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Var. 1

11 % degrad’on on 93.3Kcores
Only 1 core for coarse duties (!)
Largest prob: 20.2 billion DoFs

# of outer solver iterations Total time (secs.)

Outer solver � Dirichlet Neumann Coarse
PCG AMG(2) AMG(1) AMG(2) AMG(1)
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Outline

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC
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Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2)-(3)-(4) already exploited in our BDDC implementations
• Let us see how to exploit (5), in order to go to extreme scales

(overlapped/inexact/multilevel implementation)
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Overlapped multilevel
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Overlapped multilevel
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Weak scalability for 3D Poisson

Target machine: JUQUEEN@JSC
28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

• Fixed local problem size H
h = 303 FEs/core

• 512 level-0 cores per level-1 cores

• 3 levels: e.g. 373, 978 = 373, 248(L0) + 729(L1) + 1(L2) cores

• Direct solution of Dirichlet/Neumann/coarse problems (PARDISO)

• DIRECT solvers (PARDISO)

• Results from yesterday!... GOD SAVE JUQUEEN!
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Weak scaling 3-level BDDC(c+e+f) solver
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3-level BDDC(c+e+f)

# of PCG iters. Total time (secs.)

Experiment set-up
Lev. # MPI tasks FEs/core
1st 4K 13.8K 32.7K 64K 110.6K 175.6K 262.1K 373.2K 303 (27K)
2nd 8 27 64 125 216 343 512 729 83 (512)
3rd 1 1 1 1 1 1 1 1 n/a
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Part II

Multiphysics solvers
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Part II: Multiphysics solvers

5 Motivation: CFD solvers

6 Recursive-block preconditioning
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Outline

5 Motivation: CFD solvers

6 Recursive-block preconditioning
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The Navier-Stokes system

The continuous problem:

ˆtu ≠ ‹�u + u · Òu + Òp = f,
Ò · u = 0.

The discrete problem (e.g. using Galerkin/stabilized FEM):
5

F B

T

B ≠C

6 5
u
p

6
=

5
f
g

6
,
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Block-preconditioning
Block preconditioning

1 Consider an exact block LU factorization:
5

F G

D C

6
=

5
I 0

DF

≠1
I

6 5
F G

0 S

6
, S = C ≠ DF

≠1
G

2 Define an inexact block factorization, e.g.,
5

MF G

0 MS

6
, MF /MS are preconditioners of F/S

3 Key ingredient: scalable/robust MF /MS preconditioner, e.g., using BDDC

Solve Mz = r

1: Solve MSzp = ≠rp
2: Solve MF zu = ru ≠ B

T
zp
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Weak scalability for 3D Stokes

Target machine: HELIOS@IFERC-CSC
4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs)

• Target problem: Stokes on ⌦ = [0, 1]3 (lid-driven cavity problem)

• Uniform global mesh (Q1-Q1 FEs, ASGS-stabilized) + Uniform partition

• 8, 432, . . . , 16000 cores for fine duties

• Entire 16-core blade for coarse duties

• Three di�erent preconditioners: (a) mono, (b) blk-ex, (c) blk-inex

• Direct (a & b) or AMG(1) (c) solves for Dirichlet/Neumann/Coarse probs.

• Gradually larger local problem sizes H
h = 20, 30
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Weak scaling BDDC-based solvers

Stokes problem
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mono
blk-ex

blk-inex
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blk-ex
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Largest prob: 6.91 billion DoFs

BDDC(c+e), 32K nodes/core BDDC(c+e), 108K nodes/core
Total time (secs.)
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Turbulent flows modelling
Applied to LES of turbulent incompressible flows

Decay Homogeneous isotropic
turbulence (vorticity)

Taylor-Green vortex flow
(vorticity t = 1, 6)
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Outline

5 Motivation: CFD solvers

6 Recursive-block preconditioning
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Recursive block preconditioning
Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2 ◊ 2 block system:
5

F G

D C

6 5
x

y

6
=

5
f

g

6

2 Define an inexact block factorization, e.g.,
5

MF G

0 MS

6≠1

, MF /MS are preconditioners of F/S

3 If MF and/or MS involve two or more variables
æ recursively approximate by an incomplete LU (goto 1)

Key ingredient: scalable and robust MF and MS preconditioner
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Test blanket simulations

(a) u and p (b) j and „ (c) Velocity streamlines

Simulation results for the Tecnofus TBM.

• Typical blanket module simulation, Ha ƒ 15, 000
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Test problem: 3D thermal cavity
Framework applied to thermal MHD (benchmarks)

(a) u (b) p (c) j (d) „ (e) T

Thermal cavity at Ha=100.

Abstract implementation of (block-)operators in FEMPAR [SB, Mart́ın, Planas]
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Conclusions and future work

• Highly scalable implementation of BDDC (overlapping)
• Inexact BDDC solvers highly scalable (hybrid DD-AMG)
• Multiscale BDDC implementations

• CFD solvers based on block preconditioners + BDDC
• Extension to multiphysics: recursive block-preconditioning
• Example of use: e�ective inductionless MHD

• Future work: Exploit our very recent ML extension and consider
Multilevel/inexact/overlapped BDDC implementation
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