
On highly scalable implicit solvers for
multiphysics

Santiago Badia
TEAM: J. Pŕıncipe, A. Mart́ın, R. Planas, O. Colomés, A. Hierro, M. Olm, H. Nguyen, J. Bonilla

HPSC Team, Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE)
Castelldefels, Spain

Universitat Politècnica de Catalunya
Barcelona, Spain

RES Engineering Seminar, Barcelona, October 2014

0 / 34

Introduction
Part I: Scalable solvers

• This work grounds on our recent e�ortsú,† towards the development of
highly scalable domain decomposition linear solvers for FE analysis

• These codes rely on a novel implementation of Balancing Domain
Decomposition by Constraints (BDDC) preconditioning

• Scalability systematically assessed for 3D elliptic PDEs (Poisson,
Elasticity) with remarkable results (e.g., weakly scales up to > 370K
IBM BG/Q cores)

ú S. Badia, A. F. Mart́ın and J. Principe. A highly scalable parallel implementation of
balancing domain decomposition by constraints. SIAM J. Sci. Comput. Vol. 36(2), pp.
C190-C218, 2014.
† S. Badia, A. F. Mart́ın and J. Principe. On the scalability of inexact balancing domain
decomposition by constraints with overlapped coarse/fine corrections. Submitted, 2014.

1 / 34

Introduction
Part II: Multiphysics solvers

• Final goal is extreme-scale multiphysics solvers based on recursive

block-preconditioningú, where highly scalable one-physics solvers are the
building blocks

• In the road to more complex problems, some experiences with
BDDC-based parallel solvers for incompressible flows† (continuous
pressure spaces)

ú S. Badia, A. F. Mart́ın and R. Planas. Block recursive LU preconditioners for the thermally
coupled incompressible inductionless MHD problem. Journal of Computational Physics, Vol.
274, pp. 562-591, 2014.
† S. Badia, and A. F. Mart́ın. Balancing domain decomposition preconditioning for the
discrete Stokes problem with continuous pressures. In preparation, 2014.

2 / 34

Part I

Highly scalable solvers

2 / 34

Part I: Highly scalable solvers

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC

2 / 34

Outline

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC

2 / 34

Domain Decomposition
• Let us consider a symmetric, coercive problem (e.g., thermal or

elasticity problem) in ⌦

• We can approximate the problem using Finite Elements, via a
triangulation T (⌦)

• Algebraic problem: Find

x œ Rn : Ax = b,

A is a large, sparse, and symmetric positive definite (also for nonsym.)

Motivation:
E�cient exploitation of distributed-memory
machines for large scale FE problems ∆
Domain decomposition framework
: interior DoFs (I); : interface dofs (�)

3 / 34

Domain Decomposition
• Let us consider a symmetric, coercive problem (e.g., thermal or

elasticity problem) in ⌦

• We can approximate the problem using Finite Elements, via a
triangulation T (⌦)

• Algebraic problem: Find

x œ Rn : Ax = b,

A is a large, sparse, and symmetric positive definite (also for nonsym.)

Motivation:
E�cient exploitation of distributed-memory
machines for large scale FE problems ∆
Domain decomposition framework
: interior DoFs (I); : interface dofs (�)

3 / 34

Domain Decomposition
• Let us consider a symmetric, coercive problem (e.g., thermal or

elasticity problem) in ⌦

• We can approximate the problem using Finite Elements, via a
triangulation T (⌦)

• Algebraic problem: Find

x œ Rn : Ax = b,

A is a large, sparse, and symmetric positive definite (also for nonsym.)

Motivation:
E�cient exploitation of distributed-memory
machines for large scale FE problems ∆
Domain decomposition framework
: interior DoFs (I); : interface dofs (�)

3 / 34

Preconditioned iterative solvers

Preconditioned iterative solvers are the only
scalable choice on (> 100Kcores)

• matvec and aplyprec per iteration
• Key ingredient: preconditioner M

≠1

• E.g., M

≠1 = A

≠1, sol’on in 1 iteration
• Weak scaling (facing ever-increasing

scales)
• No preconditioning: blow-up iterations!
• Local preconditioners (NN) without

global coupling idem

PCG (Ax = f)
r0 := f ≠ Ax0
z0 := M

≠1
r0

p0 := z0
for j = 0, . . . , till CONV do

sj+1 = Apj
. . .
zj+1 := M

≠1
rj+1

. . .
end for

fixed N/P with P ø

4 / 34

Preconditioned iterative solvers

Preconditioned iterative solvers are the only
scalable choice on (> 100Kcores)

• matvec and aplyprec per iteration
• Key ingredient: preconditioner M

≠1

• E.g., M

≠1 = A

≠1, sol’on in 1 iteration
• Weak scaling (facing ever-increasing

scales)
• No preconditioning: blow-up iterations!
• Local preconditioners (NN) without

global coupling idem

PCG (Ax = f)
r0 := f ≠ Ax0
z0 := M

≠1
r0

p0 := z0
for j = 0, . . . , till CONV do

sj+1 = Apj
. . .
zj+1 := M

≠1
rj+1

. . .
end for

 0

 50

 100

 150

 200

 250

 300

 350

 400

12 48 108 192 300 432 588 768

N
um

be
r o

f P
C

G
 it

er
at

io
ns

 fo
r t

he
 in

te
rfa

ce
 p

ro
bl

em

#subdomains

stopc=res+res. rtol=1.0e-06. atol=0.0. Weak scaling with H/h=256

CG no preconditioning
NN preconditioner

fixed N/P with P ø
4 / 34

BDDC Balancing DD by constraints

Idea: Solve problem w/ reduced continuity
• Find x̃ œ Rñ such that:

Ãx̃ = I

t
r

and obtain z = MBDDC r = E I x̃

•
Ã is a sub-assembled global matrix (only
assembled the red corners)

•
I : Ṽh ≠æ Vh is an injection
(weight, comm and add)

• E is the harmonic extension operator
(local problems to make interior residual
zero)

Vh

I I

t

Ṽh 5 / 34

BDDC preconditioning
• Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ü ṼC , with
;

ṼF = [ṽ 0]
ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Fine-grid correction (x̃F)
• Find x̃F œ Rñ such that

Ãx̃F = I

t
r , constrained to (x̃F) = 0

• Equivalent to P independent problems

Find x̃

(i)
F œ Rñ(i) such that

A

(i)
x̃

(i)
F = I

t
i r , constrained to (x̃ (i)

F) = 0

Ṽh

6 / 34

BDDC preconditioning
• Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ü ṼC , with
;

ṼF = [ṽ 0]
ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Fine-grid correction (x̃F)
• Find x̃F œ Rñ such that

Ãx̃F = I

t
r , constrained to (x̃F) = 0

• Equivalent to P independent problems

Find x̃

(i)
F œ Rñ(i) such that

A

(i)
x̃

(i)
F = I

t
i r , constrained to (x̃ (i)

F) = 0

Ṽh

6 / 34

BDDC preconditioning
• Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ü ṼC , with
;

ṼF = [ṽ 0]
ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Fine-grid correction (x̃F)
• Find x̃F œ Rñ such that

Ãx̃F = I

t
r , constrained to (x̃F) = 0

• Equivalent to P independent problems

Find x̃

(i)
F œ Rñ(i) such that

A

(i)
x̃

(i)
F = I

t
i r , constrained to (x̃ (i)

F) = 0
Ṽh

6 / 34

BDDC preconditioning
• Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ü ṼC , with
;

ṼF = [ṽ 0]
ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Coarse-grid correction (x̃C)
Computation of ṼC = span{�1,�2, . . . ,�nC }

• Find � œ Rñ◊nC such that

Ã�̃ = 0, constrained to � = I

• Equivalent to P independent problems

Find �(i) œ Rñ◊n(i)
C such that

A

(i)�(i) = 0, constrained to �(i) = I

Ṽh

6 / 34

BDDC coarse corner function

Circle domain partitioned into 9
subdomains

�j (ṼC ’s basis vector)

7 / 34

BDDC preconditioning
• Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ü ṼC , with
;

ṼF = [ṽ 0]
ṼC ‹Ã ṼF

• Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Coarse-grid correction (x̃C)
Assembly and solution of coarse-grid problem

AC = assembly(�t
A

(i)�), Solve AC –c = �t
I

t
r , x̃C = �–C

Coarse-grid problem is
• Global, i.e. couples all subdomains
• But much smaller than original Schur complement S (size nC)
• Potential loss of parallel e�ciency with P

8 / 34

Coarse dof’s definition
Key aspect: Selection of coarse dofs, i.e. continuity among subdomains

• Weak scalability (Ÿ(MBDDC A) constant for fixed N/P and ø P)

•
N/P large in practice ≥ O(104≠5)

• BDDC(ce) and BDDC(cef) require much less iterations in 3D

• But at the expense of a more costly coarse-grid problem

Coarse dofs vs. Ÿ(MBDDC A): d = 2 d = 3

Continuity on corners
#
1 + d

≠1log2 ! N
P

"$ N
P

#
1 + d

≠1log2 ! N
P

"$

Continuity of mean value on edges too
#
1 + d

≠1log2 ! N
P

"$ #
1 + d

≠1log2 ! N
P

"$

Continuity of mean value on faces too -
#
1 + d

≠1log2 ! N
P

"$

9 / 34

BDDC coarse edge function

Circle domain partitioned into 9
subdomains

�j (ṼC ’s basis vector)

10 / 34

Outline

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC

10 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2) always exploited in BDDC implementations
• Let us see how to exploit (3), in order to reduce synchronization and

boost scalability (overlapped implementation)

11 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2) always exploited in BDDC implementations
• Let us see how to exploit (3), in order to reduce synchronization and

boost scalability (overlapped implementation)

11 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2) always exploited in BDDC implementations
• Let us see how to exploit (3), in order to reduce synchronization and

boost scalability (overlapped implementation)

11 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2) always exploited in BDDC implementations
• Let us see how to exploit (3), in order to reduce synchronization and

boost scalability (overlapped implementation)

11 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2) always exploited in BDDC implementations
• Let us see how to exploit (3), in order to reduce synchronization and

boost scalability (overlapped implementation)

11 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2) always exploited in BDDC implementations
• Let us see how to exploit (3), in order to reduce synchronization and

boost scalability (overlapped implementation)

11 / 34

Overlapped implementation
Typical parallel implementation

Highly-scalable parallel implementation

global communication

fine-grid
correction

coarse-grid
correction

co
re

1
co

re
2

co
re

3
co

re
4

co
re

P
TC

TF

time

idling

main MPI communicator

• All MPI tasks have f-g duties and
one/several have also c-g duties

• Computation of f-g/c-g duties
serialized (but they are independent!)

• TC Ã O(P2) æ idling ƒ PTC

• mem Ã O(P
4
3) æ mem per core

rapidly exceeded

• MPI tasks have either f-g OR c-g
duties

• f-g/c-g corrections OVERLAPPED in
time (asynchronous)

• c-g tasks can be MASKED with f-g
tasks duties

• MPI-based or OpenMP-based (this
work) solutions are possible for c-g
correction

12 / 34

Overlapped implementation
Typical parallel implementation Highly-scalable parallel implementation

global communication

fine-grid
correction

coarse-grid
correction

co
re

1
co

re
2

co
re

3
co

re
4

co
re

P
TC

TF

time

idling

main MPI communicator

co
re

1
co

re
2

co
re

3
co

re
4

co
re

PF

global communication

fine-grid MPI
communicator

co
re

1
co

re
2

co
re

PC

coarse-grid MPI
communicator

TF

TC

PC

OpenMP-based coarse-grid
solution

• All MPI tasks have f-g duties and
one/several have also c-g duties

• Computation of f-g/c-g duties
serialized (but they are independent!)

• TC Ã O(P2) æ idling ƒ PTC

• mem Ã O(P
4
3) æ mem per core

rapidly exceeded

• MPI tasks have either f-g OR c-g
duties

• f-g/c-g corrections OVERLAPPED in
time (asynchronous)

• c-g tasks can be MASKED with f-g
tasks duties

• MPI-based or OpenMP-based (this
work) solutions are possible for c-g
correction

12 / 34

Overlapped implementation
Typical parallel implementation Highly-scalable parallel implementation

global communication

fine-grid
correction

coarse-grid
correction

co
re

1
co

re
2

co
re

3
co

re
4

co
re

P
TC

TF

time

idling

main MPI communicator

co
re

1
co

re
2

co
re

3
co

re
4

co
re

PF

global communication

fine-grid MPI
communicator

co
re

1
co

re
2

co
re

PC

coarse-grid MPI
communicator

TF

TC

PC

MPI-based coarse-grid
solution

• All MPI tasks have f-g duties and
one/several have also c-g duties

• Computation of f-g/c-g duties
serialized (but they are independent!)

• TC Ã O(P2) æ idling ƒ PTC

• mem Ã O(P
4
3) æ mem per core

rapidly exceeded

• MPI tasks have either f-g OR c-g
duties

• f-g/c-g corrections OVERLAPPED in
time (asynchronous)

• c-g tasks can be MASKED with f-g
tasks duties

• MPI-based or OpenMP-based (this
work) solutions are possible for c-g
correction

13 / 34

Overlapping regions

Fine-grid tasks Coarse-grid task
Identify local coarse DoFs

Construct GAC (Global comm’on)

Symb fact(G
A(i)

F
) O(n

4
3
i) Symb fact(GAC) O(P

4
3)

Symb fact(G
A(i)

II
) O(n

4
3
i)

Num fact(A(i)
F) O(n2

i)

Compute �i O(n
4
3
i)

A(i)
C := �t

i A
(i)�i

Gather A(i)
C (Global comm’on)

Num fact(A(i)
II) O(n2

i) AC := assble(A(i)
C)

x0 := x0 ≠ A≠1
II r0 O(n

4
3
i) Num fact(AC) O(P2)

r0 := b ≠ Ax0 O(n
4
3
i)

r (i) := It
i r

r (i)C := �t
i r

(i)

Gather r (i)C (Global comm’on)
rC := assble(r (i)C)

Compute s(i)F O(n
4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z(i)
C (Global comm’on)

s(i)C := �i z(i)
C

z(i) := Ii (s(i)F + s(i)C)

Solve Ax = b w/ BDDC-PCG

Precond’er set-up (MBDDC)
call PCG(A,MBDDC,b,x0)

PCG
r0 := b ≠ Ax0
z0 := M

≠1
BDDCr0

p0 := z0
for j = 0, . . . , till CONV do

sj+1 = Apj
. . .
zj+1 := M

≠1
BDDCrj+1

. . .
end for

14 / 34

Overlapping regions
Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC (Global comm’on)

Symb fact(G
A(i)

F
) O(n

4
3
i) Symb fact(GAC) O(P

4
3)

Symb fact(G
A(i)

II
) O(n

4
3
i)

Num fact(A(i)
F) O(n2

i)

Compute �i O(n
4
3
i)

A(i)
C := �t

i A
(i)�i

Gather A(i)
C (Global comm’on)

Num fact(A(i)
II) O(n2

i) AC := assble(A(i)
C)

x0 := x0 ≠ A≠1
II r0 O(n

4
3
i) Num fact(AC) O(P2)

r0 := b ≠ Ax0 O(n
4
3
i)

r (i) := It
i r

r (i)C := �t
i r

(i)

Gather r (i)C (Global comm’on)
rC := assble(r (i)C)

Compute s(i)F O(n
4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z(i)
C (Global comm’on)

s(i)C := �i z(i)
C

z(i) := Ii (s(i)F + s(i)C)

• Classify fine/coarse duties

• Map duties to f/c
columns (+ synchro.)

• 3 overlapping regions (!)

• ALL coarse duties can be
masked (!)

14 / 34

FEMPAR Software

FEMPAR (in-house developed HPC software, free software GNU-GPL):
Finite Element Multiphysics PARallel software

• Massively parallel sw for FE simulation of multiphysics PDEs

• Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (Part II)

• Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC
æ hybrid MPI/OpenMP implementation

• Relies on highly-e�cient vendor implementations of the dense/sparse
BLAS (Intel MKL, IBM ESSL, etc.), and interfaces to external
multi-threaded sparse direct solvers (PARDISO, HSL MA87, etc.) and
serial AMG preconditioners (HSL MI20)

• Free-software initiative funded by the ERC via a Proof of Concept Grant
2014

15 / 34

FEMPAR Software

FEMPAR (in-house developed HPC software, free software GNU-GPL):
Finite Element Multiphysics PARallel software

• Massively parallel sw for FE simulation of multiphysics PDEs

• Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (Part II)

• Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC
æ hybrid MPI/OpenMP implementation

• Relies on highly-e�cient vendor implementations of the dense/sparse
BLAS (Intel MKL, IBM ESSL, etc.), and interfaces to external
multi-threaded sparse direct solvers (PARDISO, HSL MA87, etc.) and
serial AMG preconditioners (HSL MI20)

• Free-software initiative funded by the ERC via a Proof of Concept Grant
2014

15 / 34

FEMPAR Software

FEMPAR (in-house developed HPC software, free software GNU-GPL):
Finite Element Multiphysics PARallel software

• Massively parallel sw for FE simulation of multiphysics PDEs

• Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (Part II)

• Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC
æ hybrid MPI/OpenMP implementation

• Relies on highly-e�cient vendor implementations of the dense/sparse
BLAS (Intel MKL, IBM ESSL, etc.), and interfaces to external
multi-threaded sparse direct solvers (PARDISO, HSL MA87, etc.) and
serial AMG preconditioners (HSL MI20)

• Free-software initiative funded by the ERC via a Proof of Concept Grant
2014

15 / 34

Weak scalability for 3D Poisson

Target machine: HELIOS@IFERC-CSC
4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs; 64GB)

• Target problem: ≠�u = f on ⌦ = [0, 2] ◊ [0, 1] ◊ [0, 1]

• Uniform global mesh (Q1 FEs) + Uniform partition (cubic local meshes)

• 8, 432, . . . , 27648 cores for fine duties

• Direct solution of Dirichlet/Neumann/coarse problems (PARDISO)

• Entire 16-core blade for coarse-grid duties (multi-threaded PARDISO)

• Gradually larger local problem sizes: H
h = 303, 403 FEs/core

16 / 34

Weak scaling BDDC(corners+edges)
BDDC(corners+edges) :: Poisson problem

 0

 2

 4

 6

 8

 10

 12

 14

128 2K 3.5K 5.5K 8K 11.7K 16K 21.3K 27.6K

To
ta

l W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Weak scaling for BDDC(ce)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

 0

 2

 4

 6

 8

 10

 12

 14

128 2K 3.5K 5.5K 8K 11.7K 16K 21.3K 27.6K

To
ta

l W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Weak scaling for BDDC(ce)

no overlapping
Coarse-grid on 1 core(s)
Coarse-grid on 2 core(s)
Coarse-grid on 4 core(s)
Coarse-grid on 8 core(s)

Coarse-grid on 16 core(s)

17 / 34

Outline

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC

17 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2)-(3) already exploited in our overlapped BDDC implementations
• Let us see how to exploit (4), in order to boost scalability further

(overlapped/inexact implementation)

18 / 34

Inexact BDDC

• Exact (using direct solvers) BDDC is a very e�ective preconditioner

• But also a computationally/memory demanding one

• To reduce both demands, solve approximately internal problems (e.g.,
AMG)

• Numerical analysis: inexact BDDC also algorithmically scalable
[Dohrmann, 2007]

• Benefit has to be viewed in light of future parallel architectures: the
most scalable architectures (e.g., IBM BG) will have more limited
memory per core

• Further, the coarse solver time increases as P instead of P

2, much less
degradation for high core counts (due to linear complexity)

19 / 34

Inexact BDDC

• Exact (using direct solvers) BDDC is a very e�ective preconditioner

• But also a computationally/memory demanding one

• To reduce both demands, solve approximately internal problems (e.g.,
AMG)

• Numerical analysis: inexact BDDC also algorithmically scalable
[Dohrmann, 2007]

• Benefit has to be viewed in light of future parallel architectures: the
most scalable architectures (e.g., IBM BG) will have more limited
memory per core

• Further, the coarse solver time increases as P instead of P

2, much less
degradation for high core counts (due to linear complexity)

19 / 34

Inexact BDDC

• Exact (using direct solvers) BDDC is a very e�ective preconditioner

• But also a computationally/memory demanding one

• To reduce both demands, solve approximately internal problems (e.g.,
AMG)

• Numerical analysis: inexact BDDC also algorithmically scalable
[Dohrmann, 2007]

• Benefit has to be viewed in light of future parallel architectures: the
most scalable architectures (e.g., IBM BG) will have more limited
memory per core

• Further, the coarse solver time increases as P instead of P

2, much less
degradation for high core counts (due to linear complexity)

19 / 34

Weak scalability for 3D Poisson

Target machine: JUQUEEN@JSC
28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

• Target problem: ≠�u = f on ⌦ = [0, 2] ◊ [0, 1] ◊ [0, 1]

• Uniform global mesh (Q1 FEs) + Uniform partition (cubic local meshes)

• 8, 432, . . . , 93312 cores for fine duties

• Serial AMG preconditioners (HSL MI20)

• 1 core for coarse-grid duties

• Fixed local problem size H
h = 603 FEs/core

20 / 34

Weak scaling inexact BDDC(c+e)
Inexact BDDC(corners+edges) :: Poisson problem, H

h = 60 (216K FEs/core)

 0

 5

 10

 15

 20

 25

 30

 35

 40

1K 5.5K 11.7K16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K 93.3K

N
um

be
r o

f P
C

G
 it

er
at

io
ns

#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

1K 5.5K 11.7K16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K 93.3K

N
um

be
r o

f P
C

G
 it

er
at

io
ns

#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1
 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 5.5K 11.7K16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K 93.3K
To

ta
l W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)
#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1
 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 5.5K 11.7K16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K 93.3K
To

ta
l W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)
#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1

11 % degrad’on on 93.3Kcores
Only 1 core for coarse duties (!)
Largest prob: 20.2 billion DoFs

of outer solver iterations Total time (secs.)

Outer solver � Dirichlet Neumann Coarse
PCG AMG(2) AMG(1) AMG(2) AMG(1)

21 / 34

Outline

1 BDDC preconditioner

2 Highly scalable implementation

3 Inexact BDDC

4 Multilevel BDDC

21 / 34

Why BDDC for extreme scales?

1 (Mathematically supported) extremely aggressive coarsening
(105 ≠ 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse/local components can be computed in parallel (like additive)

4 ALL local + coarse problems can be solved inexactly (AMG-cycle)

5 A multilevel extension is possible (for extreme core counts)

• (1)-(2)-(3)-(4) already exploited in our BDDC implementations
• Let us see how to exploit (5), in order to go to extreme scales

(overlapped/inexact/multilevel implementation)

22 / 34

Overlapped multilevel

����������	�

���
��
����

����������	�

���
��
����

����������	�

���
��
����

��� ��� ��� ���������� ���

����������������
���
��
�����

���

�����
������
������
�����
������
�������� ������

23 / 34

Overlapped multilevel

����������	�

���
��
����

����������	�

���
��
����

����������	�

���
��
����

��� ��� ��� ���������� ���

����������������
���
��
�����

���

�����
������
������
�����
������
�������� ������

23 / 34

Weak scalability for 3D Poisson

Target machine: JUQUEEN@JSC
28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

• Fixed local problem size H
h = 303 FEs/core

• 512 level-0 cores per level-1 cores

• 3 levels: e.g. 373, 978 = 373, 248(L0) + 729(L1) + 1(L2) cores

• Direct solution of Dirichlet/Neumann/coarse problems (PARDISO)

• DIRECT solvers (PARDISO)

• Results from yesterday!... GOD SAVE JUQUEEN!

24 / 34

Weak scaling 3-level BDDC(c+e+f) solver

 0

 5

 10

 15

 20

 25

4K 32.8K 64K 110.6K 175.6K 262.1K 373.2K

PC

G
 it

er
at

io
ns

#cores

Weak scaling for 3-level BDDC(c+e+f) solver with H/h=30 (27K FEs/core)

3-level BDDC(c+e+f)

 0

 5

 10

 15

 20

 25

4K 32.8K 64K 110.6K 175.6K 262.1K 373.2K

To
ta

l W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Weak scaling for 3-level BDDC(c+e+f) solver with H/h=30 (27K FEs/core)

3-level BDDC(c+e+f)

of PCG iters. Total time (secs.)

Experiment set-up
Lev. # MPI tasks FEs/core
1st 4K 13.8K 32.7K 64K 110.6K 175.6K 262.1K 373.2K 303 (27K)
2nd 8 27 64 125 216 343 512 729 83 (512)
3rd 1 1 1 1 1 1 1 1 n/a

25 / 34

Part II

Multiphysics solvers

25 / 34

Part II: Multiphysics solvers

5 Motivation: CFD solvers

6 Recursive-block preconditioning

25 / 34

Outline

5 Motivation: CFD solvers

6 Recursive-block preconditioning

25 / 34

The Navier-Stokes system

The continuous problem:

ˆtu ≠ ‹�u + u · Òu + Òp = f,
Ò · u = 0.

The discrete problem (e.g. using Galerkin/stabilized FEM):
5

F B

T

B ≠C

6 5
u
p

6
=

5
f
g

6
,

26 / 34

Block-preconditioning
Block preconditioning

1 Consider an exact block LU factorization:
5

F G

D C

6
=

5
I 0

DF

≠1
I

6 5
F G

0 S

6
, S = C ≠ DF

≠1
G

2 Define an inexact block factorization, e.g.,
5

MF G

0 MS

6
, MF /MS are preconditioners of F/S

3 Key ingredient: scalable/robust MF /MS preconditioner, e.g., using BDDC

Solve Mz = r

1: Solve MSzp = ≠rp
2: Solve MF zu = ru ≠ B

T
zp

27 / 34

Weak scalability for 3D Stokes

Target machine: HELIOS@IFERC-CSC
4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs)

• Target problem: Stokes on ⌦ = [0, 1]3 (lid-driven cavity problem)

• Uniform global mesh (Q1-Q1 FEs, ASGS-stabilized) + Uniform partition

• 8, 432, . . . , 16000 cores for fine duties

• Entire 16-core blade for coarse duties

• Three di�erent preconditioners: (a) mono, (b) blk-ex, (c) blk-inex

• Direct (a & b) or AMG(1) (c) solves for Dirichlet/Neumann/Coarse probs.

• Gradually larger local problem sizes H
h = 20, 30

28 / 34

Weak scaling BDDC-based solvers

Stokes problem

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

128 2K 3.5K 5.5K 8K 11.7K 16K

To
ta

l W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Weak scaling for BDDC(ce)-based solvers with H/h=20 (32K FEs/core)

mono
blk-ex

blk-inex

 0

 20

 40

 60

 80

 100

 120

 140

 160

128 2K 3.5K 5.5K 8K 11.7K 16K

To
ta

l W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Weak scaling for BDDC(ce)-based solvers with H/h=30 (108K FEs/core)

blk-ex
blk-inex

Largest prob: 6.91 billion DoFs

BDDC(c+e), 32K nodes/core BDDC(c+e), 108K nodes/core
Total time (secs.)

29 / 34

Turbulent flows modelling
Applied to LES of turbulent incompressible flows

Decay Homogeneous isotropic
turbulence (vorticity)

Taylor-Green vortex flow
(vorticity t = 1, 6)

30 / 34

Turbulent flows modelling
Applied to LES of turbulent incompressible flows

Decay Homogeneous isotropic
turbulence (vorticity)

Taylor-Green vortex flow
(vorticity t = 1, 6)

30 / 34

Outline

5 Motivation: CFD solvers

6 Recursive-block preconditioning

30 / 34

Recursive block preconditioning
Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2 ◊ 2 block system:
5

F G

D C

6 5
x

y

6
=

5
f

g

6

2 Define an inexact block factorization, e.g.,
5

MF G

0 MS

6≠1

, MF /MS are preconditioners of F/S

3 If MF and/or MS involve two or more variables
æ recursively approximate by an incomplete LU (goto 1)

Key ingredient: scalable and robust MF and MS preconditioner

31 / 34

Recursive block preconditioning
Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2 ◊ 2 block system:
5

F G

D C

6 5
x

y

6
=

5
f

g

6

2 Define an inexact block factorization, e.g.,
5

MF G

0 MS

6≠1

, MF /MS are preconditioners of F/S

3 If MF and/or MS involve two or more variables
æ recursively approximate by an incomplete LU (goto 1)

Key ingredient: scalable and robust MF and MS preconditioner

31 / 34

Recursive block preconditioning
Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2 ◊ 2 block system:
5

F G

D C

6 5
x

y

6
=

5
f

g

6

2 Define an inexact block factorization, e.g.,
5

MF G

0 MS

6≠1

, MF /MS are preconditioners of F/S

3 If MF and/or MS involve two or more variables
æ recursively approximate by an incomplete LU (goto 1)

Key ingredient: scalable and robust MF and MS preconditioner

31 / 34

Recursive block preconditioning
Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2 ◊ 2 block system:
5

F G

D C

6 5
x

y

6
=

5
f

g

6

2 Define an inexact block factorization, e.g.,
5

MF G

0 MS

6≠1

, MF /MS are preconditioners of F/S

3 If MF and/or MS involve two or more variables
æ recursively approximate by an incomplete LU (goto 1)

Key ingredient: scalable and robust MF and MS preconditioner

31 / 34

Test blanket simulations

(a) u and p (b) j and „ (c) Velocity streamlines

Simulation results for the Tecnofus TBM.

• Typical blanket module simulation, Ha ƒ 15, 000

32 / 34

Test problem: 3D thermal cavity
Framework applied to thermal MHD (benchmarks)

(a) u (b) p (c) j (d) „ (e) T

Thermal cavity at Ha=100.

Abstract implementation of (block-)operators in FEMPAR [SB, Mart́ın, Planas]
33 / 34

Conclusions and future work

• Highly scalable implementation of BDDC (overlapping)
• Inexact BDDC solvers highly scalable (hybrid DD-AMG)
• Multiscale BDDC implementations

• CFD solvers based on block preconditioners + BDDC
• Extension to multiphysics: recursive block-preconditioning
• Example of use: e�ective inductionless MHD

• Future work: Exploit our very recent ML extension and consider
Multilevel/inexact/overlapped BDDC implementation

34 / 34

Conclusions and future work

• Highly scalable implementation of BDDC (overlapping)
• Inexact BDDC solvers highly scalable (hybrid DD-AMG)
• Multiscale BDDC implementations

• CFD solvers based on block preconditioners + BDDC
• Extension to multiphysics: recursive block-preconditioning
• Example of use: e�ective inductionless MHD

• Future work: Exploit our very recent ML extension and consider
Multilevel/inexact/overlapped BDDC implementation

34 / 34

Conclusions and future work

• Highly scalable implementation of BDDC (overlapping)
• Inexact BDDC solvers highly scalable (hybrid DD-AMG)
• Multiscale BDDC implementations

• CFD solvers based on block preconditioners + BDDC
• Extension to multiphysics: recursive block-preconditioning
• Example of use: e�ective inductionless MHD

• Future work: Exploit our very recent ML extension and consider
Multilevel/inexact/overlapped BDDC implementation

34 / 34

References
S. Badia, A. F. Mart́ın and J. Principe. A highly scalable parallel implementation of balancing
domain decomposition by constraints. SIAM Journal on Scientific Computing. Vol. 36(2), pp.
C190-C218, 2014.

S. Badia, A. F. Mart́ın and J. Principe. Implementation and scalability analysis of balancing domain
decomposition methods. Archives of Computational Methods in Engineering. Vol. 20(3), pp. 239-
262, 2013.

S. Badia, A. F. Mart́ın and J. Principe. On the scalability of inexact balancing domain decompo-
sition by constraints with overlapped coarse/fine corrections. Submitted, 2014.

S. Badia, A. F. Mart́ın and R. Planas. Block recursive LU preconditioners for the thermally coupled
incompressible inductionless MHD problem Journal of Computational Physics, Vol. 274, pp. 562-
591, 2014.

Work funded by the ERC Starting Grant 258443 and Proof of
Concept Grant

Preprints at
http://badia.rmee.upc.edu/sbadia_ar.html

HPSC team:
https://web.cimne.upc.edu/groups/comfus/

34 / 34

http://badia.rmee.upc.edu/sbadia_ar.html
https://web.cimne.upc.edu/groups/comfus/

	Highly scalable solvers

