

On highly scalable implicit solvers for multiphysics

Santiago Badia

TEAM: J. Príncipe, A. Martín, R. Planas, O. Colomés, A. Hierro, M. Olm, H. Nguyen, J. Bonilla

HPSC Team, Centre Internacional de Mètodes Numèrics a l'Enginyeria (CIMNE) Castelldefels, Spain

> Universitat Politècnica de Catalunya Barcelona, Spain

RES Engineering Seminar, Barcelona, October 2014

Part I: Scalable solvers

- This work grounds on our recent efforts^{*,†} towards the development of highly scalable domain decomposition linear solvers for FE analysis
- These codes rely on a novel implementation of Balancing Domain Decomposition by Constraints (BDDC) preconditioning
- Scalability systematically assessed for 3D elliptic PDEs (Poisson, Elasticity) with remarkable results (e.g., weakly scales up to > 370K IBM BG/Q cores)

- * S. Badia, A. F. Martín and J. Principe. A highly scalable parallel implementation of balancing domain decomposition by constraints. *SIAM J. Sci. Comput.* Vol. 36(2), pp. C190-C218, 2014.
- [†] S. Badia, A. F. Martín and J. Principe. On the scalability of inexact balancing domain decomposition by constraints with overlapped coarse/fine corrections. Submitted, 2014.

Part II: Multiphysics solvers

- Final goal is extreme-scale multiphysics solvers based on *recursive* block-preconditioning*, where highly scalable one-physics solvers are the building blocks
- In the road to more complex problems, some experiences with BDDC-based parallel solvers for incompressible flows[†] (continuous pressure spaces)

* S. Badia, A. F. Martín and R. Planas. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem. *Journal of Computational Physics*, Vol. 274, pp. 562-591, 2014.

[†] S. Badia, and A. F. Martín. Balancing domain decomposition preconditioning for the discrete Stokes problem with continuous pressures. In preparation, 2014.

Part I

Highly scalable solvers

1 BDDC preconditioner

- 2 Highly scalable implementation
- 3 Inexact BDDC
- 4 Multilevel BDDC

Outline

1 BDDC preconditioner

2 Highly scalable implementation

Domain Decomposition

- Let us consider a symmetric, coercive problem (e.g., thermal or elasticity problem) in $\boldsymbol{\Omega}$
- We can approximate the problem using Finite Elements, via a triangulation $\mathcal{T}(\Omega)$
- Algebraic problem: Find

$$x \in \mathbb{R}^n$$
 : $Ax = b$,

A is a large, sparse, and symmetric positive definite (also for nonsym.)

Domain Decomposition

- Let us consider a symmetric, coercive problem (e.g., thermal or elasticity problem) in $\boldsymbol{\Omega}$
- We can approximate the problem using Finite Elements, via a triangulation $\mathcal{T}(\Omega)$
- Algebraic problem: Find

$$x \in \mathbb{R}^n$$
 : $Ax = b$,

A is a large, sparse, and symmetric positive definite (also for nonsym.)

Domain Decomposition

- Let us consider a symmetric, coercive problem (e.g., thermal or elasticity problem) in $\boldsymbol{\Omega}$
- We can approximate the problem using Finite Elements, via a triangulation $\mathcal{T}(\Omega)$
- Algebraic problem: Find

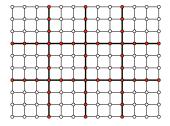
$$x \in \mathbb{R}^n$$
 : $Ax = b$,

A is a large, sparse, and symmetric positive definite (also for nonsym.)

Motivation:

 $\begin{array}{l} \mbox{Efficient exploitation of distributed-memory} \\ \mbox{machines for large scale FE problems} \Rightarrow \\ \mbox{Domain decomposition framework} \end{array}$

o: interior DoFs (1); •: interface dofs (Γ)



Preconditioned iterative solvers

Preconditioned iterative solvers are the only *scalable* choice on (> 100Kcores)

- matvec and aplyprec per iteration
- Key ingredient: preconditioner M^{-1}
- E.g., $M^{-1} = A^{-1}$, sol'on in 1 iteration
- Weak scaling (facing ever-increasing scales)
- No preconditioning: blow-up iterations!
- Local preconditioners (NN) without global coupling idem

PCG (Ax = f) $r_0 := f - Ax_0$ $z_0 := M^{-1}r_0$ $p_0 := z_0$ for j = 0, ..., till CONV do $s_{j+1} = Ap_j$... $z_{j+1} := M^{-1}r_{j+1}$... end for

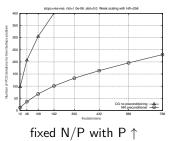
Preconditioned iterative solvers

Preconditioned iterative solvers are the only *scalable* choice on (> 100Kcores)

- matvec and aplyprec per iteration
- Key ingredient: preconditioner M^{-1}
- E.g., $M^{-1} = A^{-1}$, sol'on in 1 iteration
- Weak scaling (facing ever-increasing scales)
- No preconditioning: blow-up iterations!
- Local preconditioners (NN) without global coupling idem

PCG (Ax = f) $r_0 := f - Ax_0$ $z_0 := M^{-1}r_0$ $p_0 := z_0$ for j = 0, ..., till CONV do $s_{j+1} = Ap_j$... $z_{j+1} := M^{-1}r_{j+1}$...

end for



BDDC Balancing DD by constraints

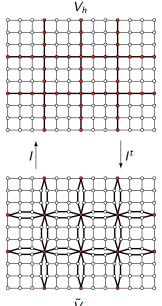
Idea: Solve problem w/ reduced continuity

• Find $\tilde{x} \in \mathbb{R}^{\tilde{n}}$ such that:

 $\tilde{A}\tilde{x} = I^t r$

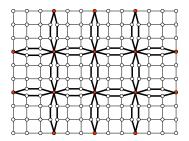
and obtain $z = M_{BDDC}r = \mathcal{E}I\tilde{x}$

- \tilde{A} is a sub-assembled global matrix (only assembled the red corners)
- $I: \tilde{V}_h \longrightarrow V_h$ is an injection (weight, comm and add)
- \mathcal{E} is the harmonic extension operator (local problems to make interior residual zero)



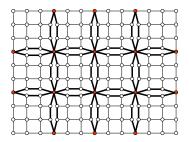
• Let
$$\tilde{V}_h = [\tilde{v}_0 \ \tilde{v}_{\bullet}]$$
 and decompose \tilde{V}_h as
 $\tilde{V}_h = \tilde{V}_F \oplus \tilde{V}_C$, with
$$\begin{cases} \tilde{V}_F = [\tilde{v}_0 \ 0 \\ \tilde{V}_C \perp_{\tilde{A}} \tilde{V}_F \end{cases}$$

• Now, problem split into fine-grid (\tilde{x}_F) and coarse-grid (\tilde{x}_C) correction



• Let
$$\tilde{V}_h = [\tilde{v}_0 \ \tilde{v}_{\bullet}]$$
 and decompose \tilde{V}_h as
 $\tilde{V}_h = \tilde{V}_F \oplus \tilde{V}_C$, with $\begin{cases} \tilde{V}_F = [\tilde{v}_0 \ 0] \\ \tilde{V}_C \perp_{\tilde{A}} \ \tilde{V}_F \end{cases}$

• Now, problem split into fine-grid (\tilde{x}_F) and coarse-grid (\tilde{x}_C) correction



• Let
$$\tilde{V}_h = [\tilde{v}_{\circ} \ \tilde{v}_{\bullet}]$$
 and decompose \tilde{V}_h as
 $\tilde{V}_h = \tilde{V}_F \oplus \tilde{V}_C$, with $\begin{cases} \tilde{V}_F = [\tilde{v}_{\circ} \ 0 \\ \tilde{V}_C \perp_{\tilde{A}} \tilde{V}_F \end{cases}$

• Now, problem split into fine-grid (\tilde{x}_F) and coarse-grid (\tilde{x}_C) correction

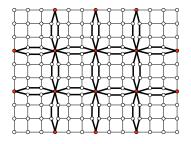
Fine-grid correction (\tilde{x}_F)

• Find $\tilde{x}_F \in \mathbb{R}^{\tilde{n}}$ such that

$$ilde{A} ilde{x}_F = I^t r, ext{ constrained to } (ilde{x}_F)_ullet = 0$$

- Equivalent to P independent problems ${\rm Find}\; \tilde{x}_F^{(i)} \in \mathbb{R}^{\tilde{n}^{(i)}} \; {\rm such \; that}$

$$A^{(i)} ilde{x}_F^{(i)} = I_i^t r$$
, constrained to $(ilde{x}_F^{(i)})_ullet = 0$



• Let
$$\tilde{V}_h = [\tilde{v}_{\odot} \ \tilde{v}_{\bullet}]$$
 and decompose \tilde{V}_h as
 $\tilde{V}_h = \tilde{V}_F \oplus \tilde{V}_C$, with $\begin{cases} \tilde{V}_F = [\tilde{v}_{\odot} \ 0] \\ \tilde{V}_C \perp_{\tilde{A}} \ \tilde{V}_F \end{cases}$

• Now, problem split into fine-grid (\tilde{x}_F) and coarse-grid (\tilde{x}_C) correction

Coarse-grid correction
$$(\tilde{x}_C)$$

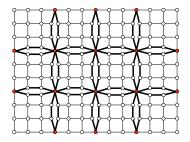
Computation of $\tilde{V}_C = \operatorname{span}\{\Phi_1, \Phi_2, \dots, \Phi_{n_C}\}$

• Find $\Phi \in \mathbb{R}^{\tilde{n} \times n_C}$ such that

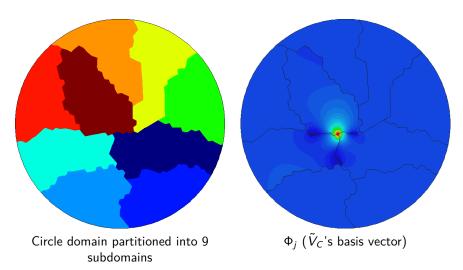
$$ilde{A} ilde{\Phi}=0,\,\, {
m constrained}\,\, {
m to}\,\, \Phi_{ullet}=I$$

• Equivalent to P independent problems $\mathsf{Find}\ \Phi^{(i)} \in \mathbb{R}^{\tilde{n} \times \, n_C^{(i)}} \text{ such that }$

 $A^{(i)}\Phi^{(i)} = 0$, constrained to $\Phi^{(i)}_{\bullet} = I$



BDDC coarse corner function



• Let
$$ilde{V}_h = [ilde{v}_{\odot} \ ilde{v}_{ullet}]$$
 and decompose $ilde{V}_h$ as

$$ilde{V}_{h} = ilde{V}_{F} \oplus ilde{V}_{C}, ext{ with } \left\{ egin{array}{c} ilde{V}_{F} = [ilde{v}_{0} \ 0] \ ilde{V}_{C} \perp_{ ilde{A}} ilde{V}_{F} \end{array}
ight.$$

• Now, problem split into fine-grid (\tilde{x}_F) and coarse-grid (\tilde{x}_C) correction

Coarse-grid correction (\tilde{x}_C)

Assembly and solution of coarse-grid problem

 $A_C = \text{assembly}(\Phi^t A^{(i)} \Phi), \text{ Solve } A_C \alpha_c = \Phi^t I^t r, \quad \tilde{x}_C = \Phi \alpha_C$

Coarse-grid problem is

- Global, i.e. couples all subdomains
- But much smaller than original Schur complement S (size ${
 m n_C}$)
- Potential loss of parallel efficiency with P

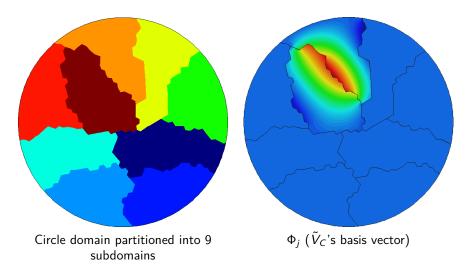
Coarse dof's definition

Key aspect: Selection of coarse dofs, i.e. continuity among subdomains

- Weak scalability ($\kappa(M_{BDDC}A)$ constant for fixed N/P and $\uparrow P$)
- N/P large in practice $\sim \mathcal{O}(10^{4-5})$
- BDDC(ce) and BDDC(cef) require much less iterations in 3D
- But at the expense of a more costly coarse-grid problem

Coarse dofs vs. $\kappa(M_{BDDC}A)$:	<i>d</i> = 2	<i>d</i> = 3
Continuity on corners	$\left[1+d^{-1}\mathrm{log}^{2}\left(rac{N}{P} ight) ight]$	$rac{N}{P}\left[1+d^{-1}\mathrm{log}^{2}\left(rac{N}{P} ight) ight]$
Continuity of mean value on edges too	$\left[1+d^{-1}\mathrm{log}^{2}\left(rac{N}{P} ight) ight]$	$\left[1+d^{-1}\mathrm{log}^{2}\left(rac{N}{P} ight) ight]$
Continuity of mean value on faces too	-	$\left[1+d^{-1}\mathrm{log}^{2}\left(\frac{N}{P}\right) ight]$

BDDC coarse edge function



Outline

1 BDDC preconditioner

2 Highly scalable implementation

4 Multilevel BDDC

- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- ② The coarse matrix has a similar **sparsity** as the original matrix
- (3) Coarse/local components can be computed in parallel (like additive)
- Ø ALL local + coarse problems can be solved inexactly (AMG-cycle)
- (5) A multilevel extension is possible (for extreme core counts)

- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- 2 The coarse matrix has a similar **sparsity** as the original matrix
- (3) Coarse/local components can be computed in parallel (like additive)
- Ø ALL local + coarse problems can be solved inexactly (AMG-cycle)
- (5) A multilevel extension is possible (for extreme core counts)

- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- 2 The coarse matrix has a similar **sparsity** as the original matrix
- 3 Coarse/local components can be computed in parallel (like additive)
- ALL local + coarse problems can be solved inexactly (AMG-cycle)
- (5) A multilevel extension is possible (for extreme core counts)

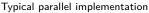
- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- 2 The coarse matrix has a similar **sparsity** as the original matrix
- 3 Coarse/local components can be computed in parallel (like additive)
- () ALL local + coarse problems can be solved inexactly (AMG-cycle)
- (5) A multilevel extension is possible (for extreme core counts)

- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- 2 The coarse matrix has a similar **sparsity** as the original matrix
- 3 Coarse/local components can be computed in parallel (like additive)
- () ALL local + coarse problems can be solved inexactly (AMG-cycle)
- **5** A **multilevel** extension is possible (for extreme core counts)

- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- 2 The coarse matrix has a similar **sparsity** as the original matrix
- **3** Coarse/local components can be computed **in parallel** (like additive)
- 4 ALL local + coarse problems can be solved inexactly (AMG-cycle)
- **5** A **multilevel** extension is possible (for extreme core counts)

- (1)-(2) always exploited in BDDC implementations
- Let us see how to exploit (3), in order to reduce synchronization and boost scalability (overlapped implementation)

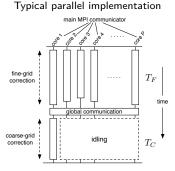
Overlapped implementation





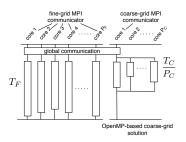
- All MPI tasks have f-g duties and one/several have also c-g duties
- Computation of f-g/c-g duties serialized (but they are independent!)
- $T_C \propto O(P^2) \rightarrow \text{idling} \simeq PT_C$
- mem $\propto \mathcal{O}(P^{\frac{4}{3}}) \rightarrow$ mem per core rapidly exceeded

Overlapped implementation



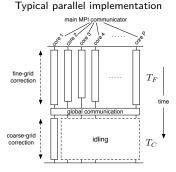
- All MPI tasks have f-g duties and one/several have also c-g duties
- Computation of f-g/c-g duties serialized (but they are independent!)
- $T_C \propto O(P^2) \rightarrow \text{idling} \simeq PT_C$
- mem ∝ O(P^{4/3}) → mem per core rapidly exceeded

Highly-scalable parallel implementation



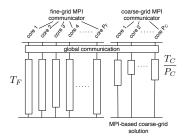
- MPI tasks have either f-g OR c-g duties
- f-g/c-g corrections OVERLAPPED in time (asynchronous)
- c-g tasks can be MASKED with f-g tasks duties
- MPI-based or OpenMP-based (this work) solutions are possible for c-g correction

Overlapped implementation



- All MPI tasks have f-g duties and one/several have also c-g duties
- Computation of f-g/c-g duties serialized (but they are independent!)
- $T_C \propto O(P^2) \rightarrow \text{idling} \simeq PT_C$
- mem ∝ O(P⁴/₃) → mem per core rapidly exceeded

Highly-scalable parallel implementation



- MPI tasks have either f-g OR c-g duties
- f-g/c-g corrections OVERLAPPED in time (asynchronous)
- c-g tasks can be MASKED with f-g tasks duties
- MPI-based or OpenMP-based (this work) solutions are possible for c-g correction

CIMNE

Overlapping regions

Solve Ax = b w / BDDC-PCG

Precond'er set-up (M_{BDDC}) call PCG (A, M_{BDDC}, b, x_0)

PCG

Overlapping regions

- Classify fine/coarse duties
 Map duties to f/c columns (+ synchro.)
 - 3 overlapping regions (!)
 - ALL coarse duties can be masked (!)

Fine-grid tasks		Coarse-grid task		
Identify local coars				
Construct <i>G_{A_C}</i> (Global comm'on)				
Symb fact($G_{A_F^{(i)}}$)	$\mathcal{O}(n_i^{\frac{4}{3}})$	Symb fact(G_{A_C})	$\mathcal{O}(P^{\frac{4}{3}})$	
Symb fact $(G_{A_{II}^{(i)}})$				
	$\mathcal{O}(n_i^2)$			
Compute Φ_i	$\mathcal{O}(n_i^{\frac{4}{3}})$			
$A_C^{(i)} := \Phi_i^t A^{(i)} \Phi_i$				
Gather $A_C^{(i)}$ (Global comm'on)				
Num fact $(A_{II}^{(i)})$	$\mathcal{O}(n_i^2)$	$A_C := assble(A_C^{(i)})$		
$x_0 := x_0 - A_{II}^{-1} r_0$	$\mathcal{O}(n_{i_A}^{\frac{4}{3}})$	Num fact (A_C)	$\mathcal{O}(P^2)$	
$r_0 := b - Ax_0$	$\mathcal{O}(n_i^{\frac{1}{3}})$			
$r^{(r)} := I_i^{r} r$				
$r_C^{(i)} := \Phi_i^t r^{(i)}$				
Gather $r_C^{(i)}$ (Global comm'on)				
	4	$r_C := assble(r_C^{(i)})$		
Compute $s_F^{(i)}$	$\mathcal{O}(n_i^{\frac{4}{3}})$	Solve $A_C z_C = r_C$	$\mathcal{O}(P^{\frac{4}{3}})$	
Scatter z_C into $z_C^{(i)}$ (Global comm'on)				
$s_{\mathrm{C}}^{(i)} := \Phi_i z_{\mathrm{C}}^{(i)}$	C			
$z^{(i)} := I_i(s_F^{(i)} + s_C^{(i)})$				

FEMPAR (in-house developed HPC software, free software GNU-GPL): Finite Element Multiphysics PARallel software

- Massively parallel sw for FE simulation of multiphysics PDEs
- Scalable preconditioning of fully coupled and implicit system via block preconditioning techniques (Part II)
- Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC \rightarrow hybrid MPI/OpenMP implementation
- Relies on highly-efficient vendor implementations of the dense/sparse BLAS (Intel MKL, IBM ESSL, etc.), and interfaces to external multi-threaded sparse direct solvers (PARDISO, HSL_MA87, etc.) and serial AMG preconditioners (HSL_MI20)
- Free-software initiative funded by the ERC via a Proof of Concept Grant 2014

FEMPAR (in-house developed HPC software, free software GNU-GPL): Finite Element Multiphysics PARallel software

- Massively parallel sw for FE simulation of multiphysics PDEs
- Scalable preconditioning of fully coupled and implicit system via block preconditioning techniques (Part II)
- Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC
 → hybrid MPI/OpenMP implementation
- Relies on highly-efficient vendor implementations of the dense/sparse BLAS (Intel MKL, IBM ESSL, etc.), and interfaces to external multi-threaded sparse direct solvers (PARDISO, HSL_MA87, etc.) and serial AMG preconditioners (HSL_MI20)
- Free-software initiative funded by the ERC via a Proof of Concept Grant 2014

FEMPAR (in-house developed HPC software, free software GNU-GPL): Finite Element Multiphysics PARallel software

- Massively parallel sw for FE simulation of multiphysics PDEs
- Scalable preconditioning of fully coupled and implicit system via block preconditioning techniques (Part II)
- Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC \rightarrow hybrid MPI/OpenMP implementation
- Relies on highly-efficient vendor implementations of the dense/sparse BLAS (Intel MKL, IBM ESSL, etc.), and interfaces to external multi-threaded sparse direct solvers (PARDISO, HSL_MA87, etc.) and serial AMG preconditioners (HSL_MI20)
- Free-software initiative funded by the ERC via a Proof of Concept Grant 2014

Weak scalability for 3D Poisson

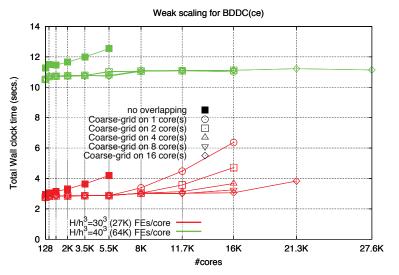
Target machine: HELIOS@IFERC-CSC

4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs; 64GB)

- Target problem: $-\Delta u = f$ on $\overline{\Omega} = [0, 2] \times [0, 1] \times [0, 1]$
- Uniform global mesh (Q1 FEs) + Uniform partition (cubic local meshes)
- 8,432,...,27648 cores for fine duties
- Direct solution of Dirichlet/Neumann/coarse problems (PARDISO)
- Entire 16-core blade for coarse-grid duties (multi-threaded PARDISO)
- Gradually larger local problem sizes: $\frac{H}{h} = 30^3, 40^3 \text{ FEs/core}$

Weak scaling BDDC(corners+edges)

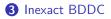
BDDC(corners+edges) :: Poisson problem



Outline

1 BDDC preconditioner

2 Highly scalable implementation



4 Multilevel BDDC

Why BDDC for extreme scales?

- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- 2 The coarse matrix has a similar **sparsity** as the original matrix
- **3** Coarse/local components can be computed **in parallel** (like additive)
- 4 ALL local + coarse problems can be solved inexactly (AMG-cycle)
- **5** A **multilevel** extension is possible (for extreme core counts)

- (1)-(2)-(3) already exploited in our overlapped BDDC implementations
- Let us see how to exploit (4), in order to boost scalability further (overlapped/inexact implementation)

- Exact (using direct solvers) BDDC is a very effective preconditioner
- But also a computationally/memory demanding one
- To reduce both demands, solve approximately internal problems (e.g., AMG)
- Numerical analysis: inexact BDDC also algorithmically scalable [Dohrmann, 2007]
- Benefit has to be viewed in light of future parallel architectures: the most scalable architectures (e.g., IBM BG) will have more limited memory per core
- Further, the coarse solver time increases as *P* instead of *P*², much less degradation for high core counts (due to linear complexity)

- Exact (using direct solvers) BDDC is a very effective preconditioner
- But also a computationally/memory demanding one
- To reduce both demands, solve approximately internal problems (e.g., AMG)
- Numerical analysis: inexact BDDC also algorithmically scalable [Dohrmann, 2007]
- Benefit has to be viewed in light of future parallel architectures: the most scalable architectures (e.g., IBM BG) will have more limited memory per core
- Further, the coarse solver time increases as *P* instead of *P*², much less degradation for high core counts (due to linear complexity)

- Exact (using direct solvers) BDDC is a very effective preconditioner
- But also a computationally/memory demanding one
- To reduce both demands, solve approximately internal problems (e.g., AMG)
- Numerical analysis: inexact BDDC also algorithmically scalable [Dohrmann, 2007]
- Benefit has to be viewed in light of future parallel architectures: the most scalable architectures (e.g., IBM BG) will have more limited memory per core
- Further, the coarse solver time increases as *P* instead of *P*², much less degradation for high core counts (due to linear complexity)

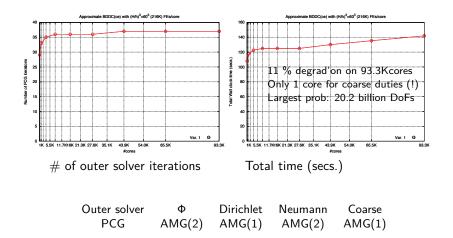
Weak scalability for 3D Poisson

Target machine: JUQUEEN@JSC 28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

- Target problem: $-\Delta u = f$ on $\overline{\Omega} = [0, 2] \times [0, 1] \times [0, 1]$
- Uniform global mesh (Q1 FEs) + Uniform partition (cubic local meshes)
- 8,432,...,93312 cores for fine duties
- Serial AMG preconditioners (HSL_MI20)
- 1 core for coarse-grid duties
- Fixed local problem size $\frac{H}{h} = 60^3$ FEs/core

Weak scaling inexact BDDC(c+e)

Inexact BDDC(corners+edges) :: Poisson problem, $\frac{H}{h} = 60$ (216K FEs/core)



Outline

BDDC preconditioner

2 Highly scalable implementation

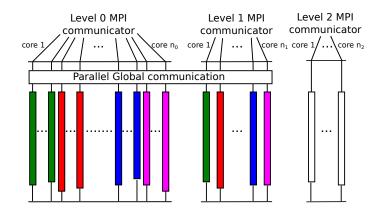
4 Multilevel BDDC

Why BDDC for extreme scales?

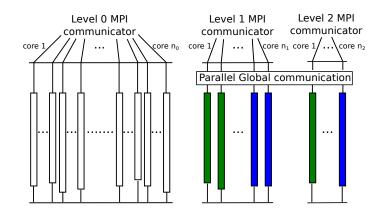
- (Mathematically supported) extremely aggressive coarsening (10⁵ - 10⁶ size reduction between fine/coarse level)
- 2 The coarse matrix has a similar **sparsity** as the original matrix
- 3 Coarse/local components can be computed in parallel (like additive)
- 4 ALL local + coarse problems can be solved inexactly (AMG-cycle)
- **5** A **multilevel** extension is possible (for extreme core counts)

- (1)-(2)-(3)-(4) already exploited in our BDDC implementations
- Let us see how to exploit (5), in order to **go to extreme scales** (overlapped/inexact/multilevel implementation)

Overlapped multilevel



Overlapped multilevel



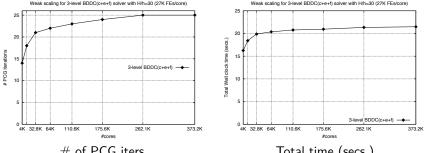
Weak scalability for 3D Poisson

Target machine: JUQUEEN@JSC

28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

- Fixed local problem size $\frac{H}{h} = 30^3$ FEs/core
- 512 level-0 cores per level-1 cores
- 3 levels: e.g. 373,978 = 373,248(L0) + 729(L1) + 1(L2) cores
- Direct solution of Dirichlet/Neumann/coarse problems (PARDISO)
- DIRECT solvers (PARDISO)
- Results from yesterday!... GOD SAVE JUQUEEN!

HPSC Weak scaling 3-level BDDC(c+e+f) solver



of PCG iters.

Total time (secs.)

Experiment set-up									
Lev.	# MPI tasks								FEs/core
1st	4K	13.8K	32.7K	64K	110.6K	175.6K	262.1K	373.2K	30 ³ (27K)
2nd	8	27	64	125	216	343	512	729	8 ³ (512)
3rd	1	1	1	1	1	1	1	1	n/a

Part II

Multiphysics solvers

Part II: Multiphysics solvers

5 Motivation: CFD solvers

6 Recursive-block preconditioning

Outline

5 Motivation: CFD solvers

6 Recursive-block preconditioning

The Navier-Stokes system

The continuous problem:

$$\partial_t \mathbf{u} - \nu \Delta \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{f},$$

 $\nabla \cdot \mathbf{u} = \mathbf{0}.$

The discrete problem (e.g. using Galerkin/stabilized FEM):

$$\left[\begin{array}{cc} F & B^T \\ B & -C \end{array}\right] \left[\begin{array}{c} \mathbf{u} \\ p \end{array}\right] = \left[\begin{array}{c} \mathbf{f} \\ g \end{array}\right],$$

Block-preconditioning

Block preconditioning

1 Consider an exact block LU factorization:

$$\begin{bmatrix} F & G \\ D & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ DF^{-1} & I \end{bmatrix} \begin{bmatrix} F & G \\ 0 & S \end{bmatrix}, \quad S = C - DF^{-1}G$$

2 Define an *inexact* block factorization, e.g.,

$$\begin{bmatrix} M_F & G \\ 0 & M_S \end{bmatrix}, \qquad M_F/M_S \text{ are preconditioners of } F/S$$

3 Key ingredient: scalable/robust M_F/M_S preconditioner, e.g., using BDDC

Solve
$$Mz = r$$

1: Solve $M_S z_p = -r_p$
2: Solve $M_F z_u = r_u - B^T z_p$

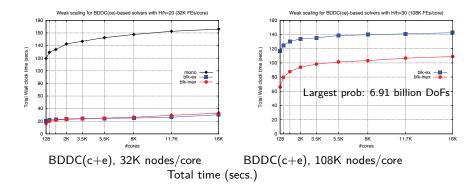
Weak scalability for 3D Stokes

Target machine: HELIOS@IFERC-CSC 4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs)

- Target problem: Stokes on $\overline{\Omega} = [0,1]^3$ (lid-driven cavity problem)
- Uniform global mesh (Q1-Q1 FEs, ASGS-stabilized) + Uniform partition
- $8, 432, \ldots, 16000$ cores for fine duties
- Entire 16-core blade for coarse duties
- Three different preconditioners: (a) mono, (b) blk-ex, (c) blk-inex
- Direct (a & b) or AMG(1) (c) solves for Dirichlet/Neumann/Coarse probs.
- Gradually larger local problem sizes $\frac{H}{h} = 20, 30$

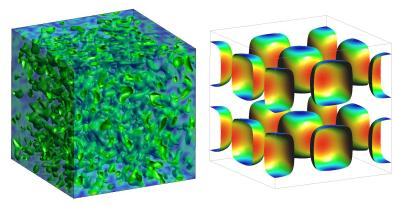
Weak scaling BDDC-based solvers

Stokes problem



Turbulent flows modelling

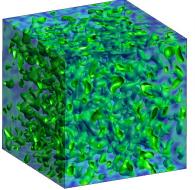
Applied to LES of turbulent incompressible flows

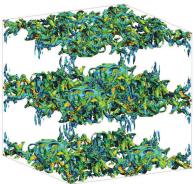


Decay Homogeneous isotropic turbulence (vorticity) Taylor-Green vortex flow (vorticity t = 1, 6)

Turbulent flows modelling

Applied to LES of turbulent incompressible flows





Decay Homogeneous isotropic turbulence (vorticity)

Taylor-Green vortex flow (vorticity t = 1, 6)

(5) Motivation: CFD solvers

6 Recursive-block preconditioning

Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2×2 block system:

$$\left[\begin{array}{cc} F & G \\ D & C \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} f \\ g \end{array}\right]$$

2 Define an *inexact* block factorization, e.g.

$$\begin{bmatrix} M_F & G \\ 0 & M_S \end{bmatrix}^{-1}, \qquad M_F/M_S \text{ are preconditioners of } F/S$$

③ If M_F and/or M_S involve two or more variables \rightarrow recursively approximate by an incomplete LU (goto 1)

Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2×2 block system:

$$\left[\begin{array}{cc} F & G \\ D & C \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} f \\ g \end{array}\right]$$

2 Define an *inexact* block factorization, e.g.,

$$\begin{bmatrix} M_F & G \\ 0 & M_S \end{bmatrix}^{-1}, \qquad M_F/M_S \text{ are preconditioners of } F/S$$

③ If M_F and/or M_S involve two or more variables → recursively approximate by an incomplete LU (goto 1)

Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2×2 block system:

$$\left[\begin{array}{cc} F & G \\ D & C \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} f \\ g \end{array}\right]$$

2 Define an *inexact* block factorization, e.g.,

$$\begin{bmatrix} M_F & G \\ 0 & M_S \end{bmatrix}^{-1}, \qquad M_F/M_S \text{ are preconditioners of } F/S$$

3 If M_F and/or M_S involve two or more variables \rightarrow recursively approximate by an incomplete LU (goto 1)

Target: Scalable preconditioners for multiphysics (block precond + BDDC)

1 Reblock a generic multiphysics problem as a 2×2 block system:

$$\left[\begin{array}{cc} F & G \\ D & C \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} f \\ g \end{array}\right]$$

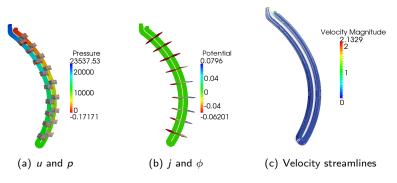
2 Define an *inexact* block factorization, e.g.,

$$\begin{bmatrix} M_F & G \\ 0 & M_S \end{bmatrix}^{-1}, \qquad M_F/M_S \text{ are preconditioners of } F/S$$

(3) If M_F and/or M_S involve two or more variables \rightarrow recursively approximate by an incomplete LU (goto 1)

Key ingredient: scalable and robust M_F and M_S preconditioner

Test blanket simulations

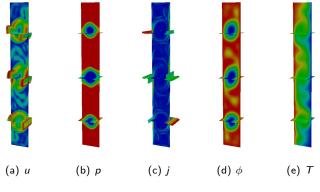


Simulation results for the Tecnofus TBM.

• Typical blanket module simulation, $\mathrm{Ha}\simeq 15,000$

Test problem: 3D thermal cavity

Framework applied to thermal MHD (benchmarks)



Thermal cavity at Ha=100.

Abstract implementation of (block-)operators in FEMPAR [SB, Martín, Planas]

Conclusions and future work

- Highly scalable implementation of BDDC (overlapping)
- Inexact BDDC solvers highly scalable (hybrid DD-AMG)
- Multiscale BDDC implementations
- CFD solvers based on block preconditioners + BDDC
- Extension to multiphysics: recursive block-preconditioning
- Example of use: effective inductionless MHD
- Future work: Exploit our very recent ML extension and consider Multilevel/inexact/overlapped BDDC implementation

Conclusions and future work

- Highly scalable implementation of BDDC (overlapping)
- Inexact BDDC solvers highly scalable (hybrid DD-AMG)
- Multiscale BDDC implementations
- CFD solvers based on block preconditioners + BDDC
- Extension to multiphysics: recursive block-preconditioning
- Example of use: effective inductionless MHD
- Future work: Exploit our very recent ML extension and consider Multilevel/inexact/overlapped BDDC implementation

Conclusions and future work

- Highly scalable implementation of BDDC (overlapping)
- Inexact BDDC solvers highly scalable (hybrid DD-AMG)
- Multiscale BDDC implementations
- CFD solvers based on block preconditioners + BDDC
- Extension to multiphysics: recursive block-preconditioning
- Example of use: effective inductionless MHD
- Future work: Exploit our very recent ML extension and consider Multilevel/inexact/overlapped BDDC implementation

References

S. Badia, A. F. Martín and J. Principe. A highly scalable parallel implementation of balancing domain decomposition by constraints. *SIAM Journal on Scientific Computing*. Vol. 36(2), pp. C190-C218, 2014.

S. Badia, A. F. Martín and J. Principe. Implementation and scalability analysis of balancing domain decomposition methods. *Archives of Computational Methods in Engineering*. Vol. 20(3), pp. 239-262, 2013.

- S. Badia, A. F. Martín and J. Principe. On the scalability of inexact balancing domain decomposition by constraints with overlapped coarse/fine corrections. Submitted, 2014.
- S. Badia, A. F. Martín and R. Planas. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem Journal of Computational Physics, Vol. 274, pp. 562-591, 2014.

Work funded by the ERC Starting Grant 258443 and Proof of Concept \mbox{Grant}

Preprints at

http://badia.rmee.upc.edu/sbadia_ar.html

HPSC team:

https://web.cimne.upc.edu/groups/comfus/

