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Introduction (I)

Disorder may have dramatic effects in condensed matter
physics. For instance, adding a small amount of Strontium of
La2CuO4 turns an electrical insulator into a superconductor.

Basic approach in fundamental Physics: identify minimal
model for complex behavior (support: Universality and
Wilson’s RG).

The Random-Field Ising Model (RFIM) is a cherised but still
not completely understood model for the effects of disorder.
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Introduction (II): The standard Ising model

H = −J
∑
x,y

sxsy − h
∑

x

sx , sx = ±1 .
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Introduction (III): The Random-Field Ising model

H = −J
∑
x,y

sxsy −
∑

x

hxsx , sx = ±1 .

Two conflicting terms in the Hamiltonian.

Found useful in a wild variety of contexts:

Antiferromagnets in an externally applied magnetic field.
Binary liquids in porous media
Colossal magnetorresistence oxides.
Ferroelectrics,. . .

In spite of innocent aspect, quintessential non-perturbative
problem (e.g. the lower critical dimension paradox).

Space dimension is an all-important variable.
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Introduction (IV): some open problems

The random-field Ising model (RFIM) is a long-standing
problem of Statistical Mechanics (≈ 1700 papers in the years
1970 - 2012: source ISI WEB).

Unusual RG: fixed point at zero temperature (T = 0) leading
to hyper-scaling violations (exponent θ).

Some cherished concepts, i.e. the two-exponent scaling
scenario (η̄ = 2η), have been recently questioned (Tissier and
Tarjus, PRL 107, 041601 (2011)).

Universality in terms of different random-field distributions
has been severely questioned many times.

We only have analytic control of the problem in very high
space dimensions (upper critical dimension: d = 6).
Understanding what happens upon varying d is a critical issue.
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Ingredients in our approach (I): The Hamiltonian and the
T = 0 scenario.

H(RFIM) = −J
∑
〈x ,y〉

SxSy −
∑
x

hxSx , ; Sx = ±1 ; J > 0

Work at T = 0 using efficient optimization algorithms that
calculate exact ground states (Middleton and Fisher, PRB 65,
134411 (2002)).

R P

F

h / J

0

h
c

T / J
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Ingredients in our approach (II): Simulated (continuous)
field distributions

double Gaussian (dG):

W(dG)(hx ; hR , σ) = 1
2

1√
2πσ2

[
e−

(hx−hR )2

2σ2 + e−
(hx+hR )2

2σ2

]
bimodal (b): σ = 0
Gaussian (G): hR = 0

dG(σ=1): bimodal - like continuous distribution
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dG(σ=2)

Poissonian (P): W(P)(hx ; hR) = 1
2|hR |e

−|hx |/hR
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Ingredients in our approach (III): Computational scheme

Use fluctuation-dissipation formalism to:

Compute connected correlation functions Γxy = ∂〈Sx〉
∂hy

.

Compute as well disconnected correlations Gxy = 〈SxSy 〉.
For either correlator → second-moment correlation length.
Perform re-weighting extrapolation on hR .
Compute derivatives with respect to hR → estimation of the
critical exponent ν.

Obtain size-dependent effective exponents → control scaling
corrections (make use of the quotient method).

Perform high statistics in both directions: L ≤ 192 in d = 3
(L ≥ 60 in d = 4), # disorder samples in the range
(10− 50)× 106.
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The computational challenge

Overall goal: obtain some 5× 107 ground states.

Even with very efficient min-cut/max-flow algorithms it is
crucial to optimize application.

Homemade code 10 times faster than library implementations:
2 minutes per Ground State on modern CPU: 2 million hours
of CPU.

Beyond capabilities of any local resource RES!!.

Major logistic problems to be faced: disk storage, massive I/O
flow, data base of results... The MareNostrum could handle it
all.
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The MareNostrum could handle it
all.
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Crossings of the universal ratio ξ/L (from connected Γxy )
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Mind the very strong scaling corrections!

ξ/L at the crossing points: different models differ at fixed L.
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One needs extrapolation to large L.
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Universality in the d = 3 RFIM

A + BL−ω + CL−2ω + DL−3ω ; Lmin = 24 ; ω = 0.52± 0.11 ;
χ2/dof = 18.83/14, Q = 0.17 (full covariance-matrix!)
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The same approach can be carried out in d=4
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Extrapolation of ν

νL = ν + BL−ω ; Lmin = 32 ; ω = 0.52 ;
χ2/dof = 12.52/10, Q = 0.25
Final estimate: ν = 1.38± 0.10
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Extrapolation of η

ηL = η + BL−ω ; Lmin = 32 ; ω = 0.52 ; χ2/dof = 10/9, Q = 0.35
Final estimate: η = 0.5153± 0.0009
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Extrapolation of 2η − η̄

(2η − η̄)|L = BL−ω ; Lmin = 16 ; ω = 0.52 ;
χ2/dof = 18.26/18, Q = 0.44
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Conclusions

The phase diagram of the RFIM is seemingly ruled by a single
fixed point:
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Existence of strong scaling corrections that need to be
carefully monitored. Very accurate computation of anomalous
dimensions η, η̄.

The two-exponent scaling scenario holds within an
accuracy of two parts in a thousand (2/1000) in d = 3.
Analysis for d = 4 on their way.
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