
termofluids.com

Termo Fluids S.L., Av Jaquard 97 1-E, Terrassa, Barcelona, Spain

Ricard Borrell Pol, R&D Manager
Guillermo Oyarzun, Researcher

● SME from Terrassa (Barcelona)

● Spin-off of the CTTC center from the Technical University of Catalonia

● We provide CFD consulting services at leading edge HPC level using
advanced multi-physic models

● Our studies are based on simulations performed with our in-house
unstructured CFD code

● Working for different industrial areas such as renewable power
generation, thermal equipments or HVAC and refrigeration

● Network:

TERMO FLUIDS

● TermoFluids currently not available as a standalone product, but is shared with
different academic partners:

● CTTC – Technical University of Catalonia (UPC)
● Aerodynamics and Flight Mechanics Group - University of Southampton
● Computational aeroacoustic laboratory - Russian Academy of Sciences

● General purpose unstructured CFD code in C++

● Finite volume symmetry-preserving discretizations on unstructured meshes

● Several LES and Regularization models for turbulent flows

● Expansion to multi-physics simulations: reactive flows, combustion, multi-phase
flows, particles propagation, fluid structure interactions, radiation effects, dynamic
meshes...

TermoFluids CODE

● HPC is an essential tool for CFD (high demand of computing and memory resources)

● TermoFluids code:

✔ C++ object oriented

✔ Mostly based on the distributed memory model (MPI) – recently developed hybrid model with
GPU-coprocessors (MPI/CUDA)

✔ Performance barriers:

● Parallelism: inter CPU communications (point-to-point, all-reduce) → not so critical now
● Flops: low flop per byte ratio → critical (low percentage of peak performance achievable)

Curie TGCC MareNostrum BSC JFF CTTC Lomonosov MSU Mira ALCF

HPC in Termo Fluids

● TermoFluids code recently used in PRACE Tier0 project by CTTC (23M hours)

● Project ran in BSC MareNostrum II supercomputer

● DRAGON - Understanding the DRAG crisis: ON the flow past a circular cylinder from
critical to trans-critical Reynolds numbers

✔ Largest simulation with 4096 CPU-cores

✔ Mesh 320M CV, Re=4e6

✔ Around 10 TB of data outputs

Recent HPC projects: DRAGON

PRACE Preparatory Access Project

● PRACE Preparatory access is intended for testing
and developing codes in order to prepare applications
for PRACE Tier-0 systems

● TermoFluids was recently ported to the hybrid
CPU/GPU model in the context of the PRACE
preparatory access project:

 “Acceleration of TermoFluids code by means of GPU
co-processors”

● Tests performed on the TGCC Curie hybrid nodes,
based on:

● 2 Intel Xeon E5640 quad-core processors
● 2 Nvidia M2090

Accelerators in HPC

● Accelerators becoming increasingly popular in leading edge supercomputers

● Potential to significantly reduce space, power consumption, and cooling demands

● Context: Constrained power consumption target (~25MW for the entire system) → power wall

 top500.org list June 2014

● 13% of the Top500 list systems are
based on hybrid nodes

● Considering the first 15 positions of
Top500 list 8 (53%) are based in hybrid
nodes

● 100% of the fist 15 positions in the
Green500 list are hybrid nodes with
accelerators (NVIDIA)

● Those rankings are based on the High-
performance LINPACK benchmark for
dense linear systems but...

 ...in general PDEs systems are sparse!

CPU vs GPU

Design goals for CPUs

● Make a single thread very fast

● Reduce latency through large caches

● Predict, speculate

http://extremecomputingtraining.anl.gov/files/2014/01/Warburton-Accelerators14.pdf

Design goals for CPUs

● Throughput matters and single threads do not

● More transistors dedicated to computation

● Hide memory latency through parallelism

● Remove modules to make simple instruction fast
 (out-of-order control logic, branch predictor logic, memory pre fetch unit)

● Share the cost of instruction stream across many ALUs (SIMD model)

● Multiple context per stream multiprocessor (SM) → concurrency

PRACE Preparatory Access Project

● Target problem:

● Flow around Asmo car

● Re = 7e5

● Mesh: 5.5 Milion CV, prismatic boundary layer and tetrahedral elements

● Symmetry preserving finite volume discretization

● Fractional step pressure-velocity coupling

● Sub-grid scales: wall-adapting local-eddy viscosity (WALE)

● Poisson solver: CG with Jacobi diagonal scaling

Flow and turbulent structures around simplified car models. D.E. Aljure, O. Lehmkuhl,, I. Rodríguez, A.
Oliva. Computers & Fluids 96 (2014) 122–135

Enabling work

● Code re-structuring: conversion of TermoFluids
momentum solver into an algebraic kernel based code

● Loops around mesh elements assembled into sparse
matrices (in a preprocessing stage)

● Time-step integration based on algebraic kernels

● Result: most of time is spent in only three basic algebraic
kernels:

● SpMV: y ← A*x (A sparse matrix, x and y vectors)

● AXPY: y ← ax+y (a scalar)

● DOT: a ← x*y

● Easier portability of the time integration code, which
dominates the execution costs

SpMV is the dominant kernel

80.77%

9.12%

8.79%1.32%

SpMV DOT AXPY OTHERS

Outside CG number

SpMV 23

AXPY 5

DOT 2

CG iteration number

SpMV 2

AXPY 3

DOT 2

Test on target problem MPI implementation

SPMV kernel

● SpMV kernel: A*x=b (A Laplacian operator)
● Tetrahedral mesh, 5 entries per row
● N system size, 5N matrix entries
● Storage format ELLPACK: 1 double (value) and 1 int (column index) per matrix entry
● A bytes in ELLPACK: 2*(8*5*N) = 80N
● b bytes: 8N
● x bytes: 8N (max cache reuse), 8*(5N) (no cache reuse)
● SpMV bytes: 2*(8*5*N) +2*(8N) = 96N – with max. cache reuse

 2*(8*5*N)+(8*5*N) + 8N = 128N – with max. cache reuse
● SpMV flops: 2*5N = 10N (a + and a * per matrix entry)

No ordering Cuthill - Mckee orderingNo ordering

Performance Barrier CPU

● Intel Xeon E5640 (4 core,Turbo Freq. 2.93 GHz, Bandwidth 25.6 GB/s)

● Sequential run of ELLPACK SpmV

● Peak performance: 4 flop/cycle x 2.93 G cycle/s = 11.72 Gflop/s (flops: 2 FMA + 2 SIMD)

● Peak bandwidth 1 thread: 10.5 GB/s (STREAM test TGCC support team)

● Time computations: 10N flop / 11.72 Gflop/s = 0.85N ns
● Time move data: 96N bytes / 10.5 GB/s = 9.14N ns
● Ratio: time_move / time_comp ≈ 10 !!
● Total time: total_time ≥ max(time_move, time_comp)= 9.14N ns

● Achievable performance:
 performance SpMV = 10N/ total_time ≤ 10N/9.14N = 1.09 Gflop/s

 NO MORE THAN 9.3% OF CPU CORE PERFORMANCE CAN BE ACHIEVED!!

Performance Barrier CPU

● Intel Xeon E5640 (4 core,Turbo Freq. 2.93 GHz, Bandwidth 25.6 GB/s)

● Sequential run of ELLPACK SpmV – REAL MEASURMENTS

● Maximal performance without cache reuse = 10 / 128 flops/byte * 10.5 Gbytes/s = 0.82
Gflop/s

● Results are in agreement with the expected performance

Performance Barrier GPU

● NVIDIA M2090 (Tesla)

● ELLPACK SpmV on one GPU – implementation on CUDA 5.5

● Peak performance: 666.1 Gflop/s

● Bandwidth: 0.8*177 = 141.6 GB/s (20% reduction caused by ECC – NVIDIA best prac. guide)

● Time computations: 10N flop / 666.1 Gflops = 0.015N ns
● Time move data: 96N bytes / 141.6 GB/s = 0.68N ns
● Ratio: time_move / time_comp ≈ 45!!
● Total time: total_time ≥ max(time_move, time_comp)= 0.68N ns

● Achievable performance:
 performance SpMV = 10N/ total_time ≤ 10N/0.68N = 14.7 Gflop/s

 NO MORE THAN 2.2% OF GPU PERFORMANCE CAN BE ACHIEVED!!

Performance Barrier CPU

● NVIDIA M2090 (Tesla)

● ELLPACK SpmV on one GPU (CUDA) – REAL MEASURMENTS

● Reaching the peak bandwidth requires certain occupancy

● Results are in agreement with the expected performance

● Single core Intel Xeon E5640 vs NVIDIA M2090

● Corollary of previous measurements: speed up from 9x to 15x

GPU vs CPU sequential

50K 100K 200K 400K 800K 1600K
0

2

4

6

8

10

12

14

16

18

Meshsize

S
p

e
e

d
u

p

Multi-core CPU

● Intel Xeon E5640

● Speedup form 1 to 4 CPU-cores (inter-core communication not included)

● Potential Speedup = bandwidth increase (only bandwidth matters!!)

● Bandwidth 1-core: 10.5 GB/s; 4-core (a CPU): 25.6 GB/s; ratio= 2.44x (<4x!!)

● The achievable performance using all 4 CPU cores reduces at ~ 6%

● Results are in agreement with the expected performance

200K 400K 800K
0.00

0.50

1.00

1.50

2.00

2.50

3.00

Speedup1cores vs 4cores

Bandwidth ratio

● ELLPACK SpMV Intel Xeon E5640 vs NVIDIA M2090

● Speedup considering all 4-cores ranges from 5x to 7x

● Ratio between peak bandwidth of both systems: 141,6 (gpu) /25.6 (cpu) = 5.5x

● GPU uses more effectively its bandwidth for higher sizes and CPU for lower ones

 MEMORY AWARE PROGRAMMING!!

200K 400K 800K
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1GPU vs 1core

1GPU vs 4cores

GPU vs multi-core CPU

Multi GPU implementation

● MPI + CUDA implementation

● Parallelization based on a domain decomposition

● One MPI-thread per subdomain and one GPU per MPI-thread

● Local data partition: separate inner parts (do not require data form other subdomains)
from interface parts (require external elements)

● Local data partition + two stream model -> overlapping computations on GPU with
communications

Multi – GPU tests

● Comparison weak speedup multi-CPU vs multi-GPU (inter CPU/GPU comm included)

● Similar results despite muti-GPU implementation is from 5x to 7x faster!!
causes:

● Number of MPI-threads is 4 times lower in multi-GPU implementation → less
communications overhead

● Overlapping is more effective in multi-GPU implementation, since communication
and computations are running on independent devices

4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50K 100K 200K

Cores

S
lo

w
D

o
w

n

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

200K 400K 800K

GPUs

S
lo

w
D

o
w

n

Multi – GPU tests

● Comparison of weak speedup, multi-CPU vs multi-GPU (inter CPU/GPU comm included)

● Local size with 32 GPUs / 128 CPUs: 50K, 100K and 200K respectively

● The local problem reduction decreases the bandwidth performance on GPU (less
occupancy)

● The bandwidth performance does not decrease on the CPUs and, additionally, improves
the cache reuse

4 8 16 32 64 128

1600K 3200K 6400K

cores

S
p

e
e

d
u

p

1 2 4 8 16 32

1600K 3200K 6400K

GPUs

S
p

e
e

d
u

p

● Flow around Asmo car, Re=7e5

● Mesh 5.5 million CV

● Prismatic boundary layer → JAGGED storage format (sliced ELLPACK)

● AXPY and DOT on mkblas 14.0.3.174 and cublas 5.0

● From 1 to 16 nodes used → from 2 to 32 GPUs - from 8 to 128 CPUs

Tests on TARGET CASE

80.77%

9.12%

8.79%1.32%

SpMV DOT AXPY OTHERS

Tests on TARGET CASE
● Strong speedup multi-GPU for the implementation of momentum solver

● 63% PE achieved (with 32 GPUs load per GPU < 172K cells)

● Performance can be estimated according: i) number of repetitions of each kernel per time
step, ii) parallel performance of kernels (SpMV, AXPY, DOT)

● “Good” agreement between estimation and real measurements → performance could be
estimated in any system by only studying it for the basic kernels

2 4 8 16
.8

1.3

2.0

3.2

5.0

8.0

Estimated Real

Nodes

S
p

e
e

d
u

p

● Speedup muti-GPU vs multi-CPU for the momentum solver

● Speedup ranges between 5x and 11x, depending on the workload

200K / 50K 400K / 100K 800K / 200K 1600K / 400K
0

2

4

6

8

10

12

Speedup CPU v/s GPU

CFD Case

Load per GPU / Load per CPU

S
p

e
e

d
u

p

Tests on TARGET CASE

CONCLUDING REMARKS

● Initial goal was accelerating TermoFluids by means of GPUs but...

● We have developed a portable version of the code based on an algebraic
operational approach

● We have seen that 98% is spent on three kernels: SpMV, AXPY, DOT
● SpMV dominates the execution with 81% in our target application
● The three algebraic kernels are memory bounded, performance depends

exclusively on the bandwidth achieved
● Our SpMV implementation on single CPU-core and single GPU show the expected

performance
● Similar parallel performance is achieved for both multi-CPU and multi-GPU

implementations
● Parallel performance of the overall time step execution is estimable from

performance of the basic kernels
● Speedup of multi-GPU vs multi-CPU implementation in our target problems ranges

from 5x to 11x

● Acknowledgments

CONCLUDING REMARCS

● Ongoing work:

● Porting other physics solvers to GPUs

● Overlapping GPU and CPU solvers in multi-physics applications

● Looking for the trade-off between code performance and programmers performance
(our engineers are more used to mesh loops rather than algebraic kernels to implement
discretizations)

Acknowledgments

THANK YOU FOR YOUR ATTENTION!

PRACE Preparatory Access TGCC Curie support team

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

