8th RES Users' Conference 2014

Longitudinal and Transverse Electronic Transport in Atomically Doped Graphene – Towards the Quantum Hall Effect

Nicolas Leconte and Stephan Roche

September 23, 2014

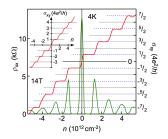
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

N. Leconte, Catalan Institute of Nanoscience and Nanotechn. RES Users' Conference

Motivation

Push the limits of computational predictions further and further, to explore new physics

- Existing real space implementation of the Kubo-Greenwood formalism : longitudinal conductivity¹.
 - Scales linearly with system size
 - Desktop computer is sufficiently powerful
 - Parallel. on Tier1/2-type infrastructure (OMP, MPI,GPU²)
- We developed a new expression for the transverse conductivity.
 - Scales linearly with system size.
 - However, Tier0 infrastructure is required (using MPI)
 - Large number of files have to be stored.


¹H. Ishii, F. Triozon, N. Koboyashi, K. Hirose, and S. Roche, C.-R. Physique **10**, 283 (2009)

²Z. Fan *et al.*, Comput. Phys. Comm. **185**, 1 (2014) - (3) (3) (3) (3)

Motivation

New Physics? ... Quantum Hall Effect (QHE)!

- Specific impact of disorder on the QHE
- Lift degeneracies in the Landau Level spectrum
- Study the QHE in realistic samples (oxygenated graphene, polycrystalline graphene, hydrogenated graphene, Hofstadter spectrum,...)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Outline

N. Leconte, Catalan Institute of Nanoscience and Nanotechn. RES Users' Conference

Bottom-Up Approach

DFT

 $\ensuremath{\textit{Ab}}\xspace$ induced by the local potential induced by the impurity

∜

$\mathsf{DFT} \to \mathsf{TB}$

Extract sufficient TB parameters to reproduce the local potential

\Downarrow

TB-parametrized Kubo Formalism

Allows us to simulate mesoscopic-sized systems (10⁶ atoms) :

- comparison with experiment
- calculate transport properties to visualize quantum effects

・ロト (周) (E) (E) (E) (E)

Bottom-Up Approach

DFT

Ab initio calculations to describe the local potential induced by the impurity

₩

$\mathsf{DFT} \to \mathsf{TB}$

Extract sufficient TB parameters to reproduce the local potential

₽

TB-parametrized Kubo Formalism

Allows us to simulate mesoscopic-sized systems (10⁶ atoms) :

- comparison with experiment
- calculate transport properties to visualize quantum effects

・ロト (周) (E) (E) (E) (E)

Bottom-Up Approach

DFT

Ab initio calculations to describe the local potential induced by the impurity

₩

$\mathsf{DFT} \to \mathsf{TB}$

Extract sufficient TB parameters to reproduce the local potential

₩

TB-parametrized Kubo Formalism

Allows us to simulate mesoscopic-sized systems (10^6 atoms) :

- comparison with experiment
- calculate transport properties to visualize quantum effects

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Longitudinal conductivity

Kubo conductivity

$$\sigma_{DC} = \frac{1}{2} e^2 \rho(E_F) \lim_{t \to \infty} \frac{\partial}{\partial t} \Delta X^2(E_F, t)$$

Wave packet : mean quadratic displacement

$$\Delta X^{2}(E,t) = \frac{Tr\left[[\widehat{X},\widehat{U}(t)]^{\dagger}\delta(E-\widehat{H})[\widehat{X},\widehat{U}(t)]\right]}{Tr\left[\delta(E-\widehat{H})\right]}$$

Diffusion coefficient

$$D_x(t) = rac{\Delta X^2(t)}{t}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Longitudinal conductivity

$$\begin{split} \left\langle \psi_1 \left| \delta(\boldsymbol{E} - \tilde{\boldsymbol{H}}) \right| \psi_1 \right\rangle &= \lim_{\eta \to 0} -\frac{1}{\pi} \mathrm{Im} \left(\left\langle \psi_1 \left| \frac{1}{\boldsymbol{E} + i\eta - \tilde{\boldsymbol{H}}} \right| \psi_1 \right\rangle \right) \right. \\ &= \lim_{\eta \to 0} -\frac{1}{\pi} \mathrm{Im} \left(\kappa_1 \right) \end{split}$$

where κ_1 is calculated using a continued fraction:

$$\kappa_{1} = \frac{1}{E + i\eta - a_{1} + \frac{b_{1}^{2}}{\dots \frac{1}{E + i\eta + a_{N-1} - \frac{b_{N-1}^{2}}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{1} + \frac{b_{1}^{2}}{\dots \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{1} + \frac{b_{1}^{2}}{\dots \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{1} + \frac{b_{1}^{2}}{\dots \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{1} + \frac{b_{1}^{2}}{\dots \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{1} + \frac{b_{1}^{2}}{\dots \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{1} + \frac{b_{1}^{2}}{\dots \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}$$

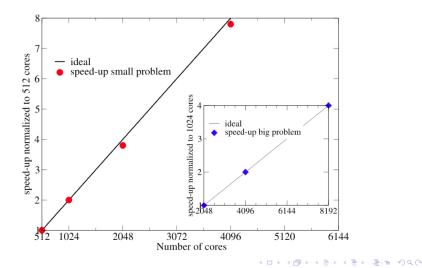
$$\kappa_{2} = \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}$$

$$\kappa_{1} = \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}$$

$$\kappa_{2} = \frac{1}{E + i\eta - a_{N} - b_{N}^{2} \times \text{Term}}}$$

Transverse conductivity

$$\sigma_{xy}(t') = \frac{2N_s}{V} \int_0^{t'} dt \int_{-\infty}^{\infty} dEf(E - \mu)$$
$$\lim_{\eta \to 0^+} \sum_{j=1}^{N_{\text{recurs}}} \operatorname{Re}\left[\left\langle \Psi_1 \middle| \delta(E - H_0) \middle| \Psi_j \right\rangle \left\langle \Psi_j \middle| j_y \frac{1}{E - H_0 + i\eta} j_x(t) \middle| \Psi_1 \right\rangle \right]$$


- (approximataly) resolved identity allows to separate the complicated product of two inverses of (sparse) matrices in two simpler factors
- These factors can be calculated with Lanczos recursion techniques allowing for linear scaling with Hamiltonian size
- However, this identity is the reason for the requirement of Tier0 infrastructure...
- For each time step, each *j* dependent term is done in parallel on each core before reducing everything on the masternode
- Very efficient parallelization: communications only take a few seconds at beginning and end of each serial j-run

Transverse conductivity

- Evolving and storing each Ψ_j (~ 100 MB)
- Up to 800 to 8000 recursion steps
- Example: 12 million atoms, 4000 recursion steps. We can do about 25 time steps in 24 hours (or 100K CPU-hours). For certain physics, 500 time steps are required (2M CPU-hours)
- Linear scaling with system size
- Quadratic scaling with number of recursion steps
- PRACE 6th Call: \sim 14M hours; 8th Call: \sim 22M hours
- During 6th Call: further code optimization for use on Curie cluster (CEA), provided by PRACE technician

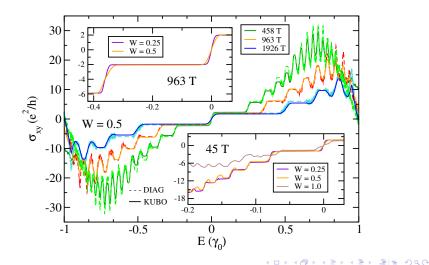
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Prace Scaling

N. Leconte, Catalan Institute of Nanoscience and Nanotechn.

RES Users' Conference

Prace Scaling


Table 1 : Scaling for a relatively small problem (720 000 sites, up to 4096 cores).

# cores	absolute timing (s)	speedup
512	1360	1
1024	689.7	2
2048	362.5	3.8
4096	174.5	7.8

Table 2 : Scaling for large system (2 000 000 sites, up to 8192 cores)

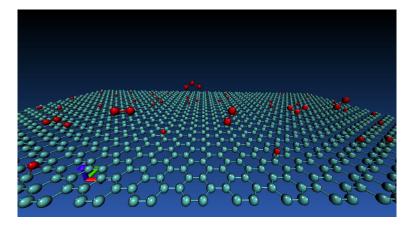
# cores	absolute timing (s)	speedup
2048	3799	1
4096	1879	2
8192	947.5	4

Transverse conductivity: validity of the method

N. Leconte, Catalan Institute of Nanoscience and Nanotechn. RES User

RES Users' Conference

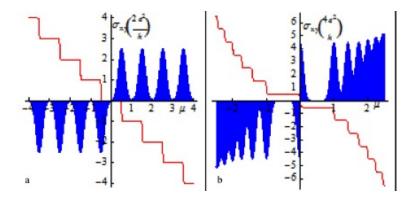
Outline



N. Leconte, Catalan Institute of Nanoscience and Nanotechn. RES Users' Conference

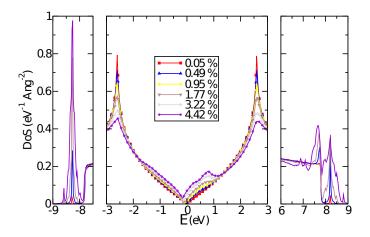
<ロ> <同> <同> <同> <同> <同> <同> <同> <同> <同</p>

Motivation Methodology Results


Ozone Treated Graphene

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

N. Leconte, Catalan Institute of Nanoscience and Nanotechn. RES Users' Conference

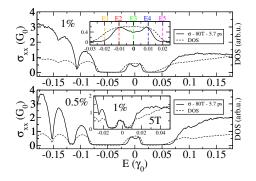

Landau levels : 2DEG versus Graphene

Graphene has zero energy states³

N. Leconte, Catalan Institute of Nanoscience and Nanotechn. RES Users' Conference

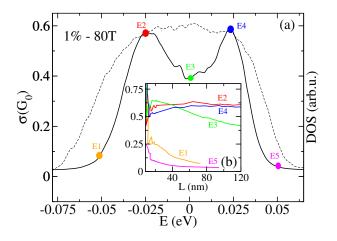
Density of States: without magnetic field

Effect of disorder more pronounced on electron side


Density of States: with magnetic field

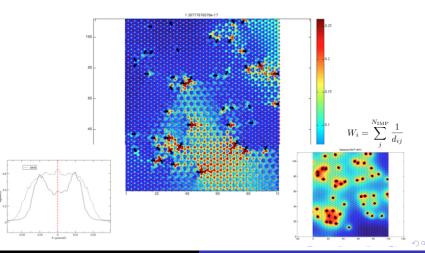
Asymmetric Landau spectrum, increasing disorder destroys the Landau quantization

N. Leconte, Catalan Institute of Nanoscience and Nanotechn. RES Users' Conference


Longitudinal Conductivity

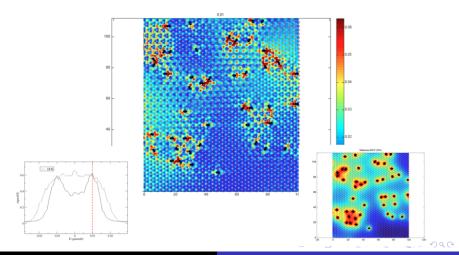
Clear observation of mobility edges
Splitting of Zero Landau Level (LL0)

N. Leconte, F. Ortmann, A. Cresti, J.-C. Charlier, and S. Roche, 2D Materials 1, 021001 (2014)


Longitudinal Conductivity

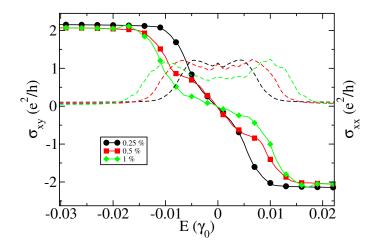
▲ 토 ▶ ▲ 토 ▶ 토 ㅌ • • • • • • •

< 🗇


Real space projection of new states

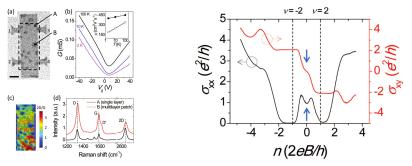
N. Leconte, Catalan Institute of Nanoscience and Nanotechn.

RES Users' Conference


Real space projection of new states

N. Leconte, Catalan Institute of Nanoscience and Nanotechn.

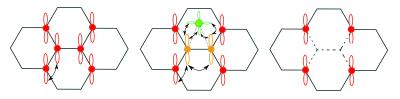
RES Users' Conference


Confirmation of zero energy Hall plateau: σ_{XY}

프 🖌 🛪 프 🛌

三日 わへで

Experimental Confirmation?


- Multilayer islands creating magnetic bound states?⁴
- Role of hydrogen?
- Evolution of splitting with magnetic field?
- Better characterization...

⁴Youngwoo Nam *et al.*, APL **103**, 233110 (2013) < ロト (アン・マート (アン・マート) モート シュート

Conclusions

- Without PRACE infrastructure, no transverse conductivity calculations...
- When you manage a large amount of hours, be flexible...

< E ▶ < E ▶ E = りへの

- Simplified model
- Similarity with oxygen, no electron-hole symmetry
- Computationnaly simpler
- Re-adjust initial guesses for allocation time

Acknowledgments + Questions

- Thank you for the attention
- Thanks to PRACE
- Thanks to collaborators : F. Ortmann, A. Cresti, J.-C. Charlier, and S. Roche,

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Questions?

N. Leconte, J. Moser, P. Ordejon, H.H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C.M. Sotomayor Torres, J.-C. Charlier, and S. Roche Damaging Graphene with Ozone Treatment: A Chemically Tunable Metal-Insulator Transition. *ACS Nano*, 4 (7), 4033–4038 (2010).

N. Leconte, A. Lherbier, F. Varchon, P. Ordejon, S. Roche, and J.-C. Charlier Quantum Transport in Chemically-modified Two-Dimensional Graphene: From Minimal Conductivity to Anderson Localization *Phys. Rev. B*, **84**, 235420 (2011). *Editor's Suggestion*

N. Leconte, F. Ortmann, A. Cresti, J.-C. Charlier, and S. Roche Quantum transport in chemically functionalized graphene at high magnetic field: Defect-Induced Critical States and Breakdown of Electron-Hole Symmetry 2D Materials, 1, 021001

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

F. Ortmann, N. Leconte, S. Roche Methodology paper on transverse conductivity implementation Under preparation

N. Leconte, F. Ortmann, A. Cresti, S. Roche Impurity engineered Landau Levels Under preparation