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Metabolism is a hot topic in cancer research.

Signals and tumor microenvironment define different metabolic programs
for enhancing proliferation, dissemination and invasion.

Opportunity of identifying biomarkers and drug targets for cancer cells
based on metabolic networks and —omics data.
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Information included: _—
e Substrates and products for an enzyme; !
Stoichiometric coefficients; Reversibility;
Compartments, Input/output metabolites,
Biomass equation

Gene-Protein-Reaction (GPR) rules:
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Cancer-specific metabolic reconstructions

Contextualize the reference metabolic network of human cells based on
avaliable —omics data and, then, conduct gene knockout perturbations
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» Cancer-specific metabolic reconstructions:

man Metabolism

subject to
’ Sv=0
u.2v. 21,

> &

vbiomass




» Cancer-specific metabolic reconstructions:

* Essential metabolites for cellular growth (biomass reaction)

— Human biomass reaction (Folger et al, 2011)

oefficient Name Description
-20.6508 h2o[c] H20

-20.7045 atp[c] ATP(4-)
-0.3859 glu_L[c] L-glutamate(1-)

-0.3526 asp_Llc] L-aspartate(1-)

-0.0361 gtplc] GTP

-0.2794 asn_L[c] L-asparagine

-0.5056 ala_L[c] L-alanine

-0.0466 cys_L[c] L-cysteine

-0.326  gln_L[c] L-glutamine

-0.5389 gly[c] Glycine

-0.3925 ser_L[c] L-serine

-0.3127 thr_L[c] L-threonine

-0.5921 lys_L[c] L-lysinium(1+)

-0.3593 arg_L[c] L-argininium(1+)

-0.153 met_L[c] L-methionine

-0.0233 pail_hs[c] 1-phosphatidyl-1D-myo-inositol(1-)
-0.039  ctplc] CTP

-0.1545 pchol_hs[c] Phaosphatidylcholine
-0.0554 pe_hs[c] phaosphatidylethanolamine
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» Gene essentiality and drug targets:

* One of these metabolites is disrupted upon gene knockout

Delete Gene 1

No reaction is
affected

Non-essential

Delete Gene 2

Reaction v;
inactive

Non-Essential

Delete Gene 3

Reactions vz and
v, inactive

Essential

Vo, ®

\ Vv
>0—
—_— Vv V6

‘\S_é V7




Gene essentiality and drug targets:

* Polyamines in cancer

Gene(s) Enzyme(s) Type

262 (AMD1) adenosylmethionine decarboxvlase Essential

4507 (MTAP) 5'-methylthioadenosine phosphorylase Essential

4953 (ODC1) Ornithine Decarboxylase Essential

6723 (SRM) spermidine synthase Essential

43 (hiﬁTiTé)Bﬁc 27430 methionine adenosyltransterase Synthetic
4143 (MAT1A) & 4144 . _ o , .

(MAT2A) methionine adenosyltransterase Synthetic

353 (APRT) & 4860 (PNP) pul'i-ne—nucleosid(-e phosphorylase Synthetic

adenine phosphoribosyltransferase
383(ARG) & 4942(0AT) ornithine transaminase reversible Synthetic

arginase

% Proliferation
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Error in the database led to APRT as an
essential gene in leukemic cells
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Pey et al, 2017,

Scientific Reports,
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» Large-scale validation of predicted essential genes:

» Project Achilles data: large-scale
gene silencing (knocking out) Lack of accuracy

experiments in order to identify
and catalogue genetic ; ks
vulnerabilities in cancer.
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QUESTION

Why and when a metabolic gene is essential for a particular
molecular context using our modeling perspective?
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Minimal Cut Sets — MCSs
(Steffen Klamt’s group)

Identification of groups of metabolic reactions, that, when simultaneously
inhibited, render celular proliferation impossible.



MCSs- Introduction

Based on: Minimal Cut Sets:
*  Optimization Theory
«  Duality Theory * Iy Iy
* Linear Algebra © r,rg
* Iy’
Inputs: o ’5: r6
+ Template Metabolic Network ® I3 Iy Fs

+ Target metabolic task o
2 I's; Iy

A. von Kamp and S. Klamt. 2014, PLoS Computational Biology

L. Tobalina et al, 2016, Bioinformatics



MCSs — Results




MCSs — Limitations

PROBLEM

Due to complex GPR rules, minimal reaction knockout
strategies may not be minimal at the gene level.

reaction reaction reaction reaction reaction
1 2 3 4 5

v/ [\

e &
A B C__Eht) O E F

et /2Nt 1

— gene a gene b gene ¢ | gene d genee |— genef |—

P. Jensen et al, 2011, BMC systems biology



MCSs — Limitations

gs and

Minimal Cut Set Gene knockout

i T4 91 94
Iy, I's 55
o I's o5
gs
r5, r6
fal Fal
ro, I3, Iy 92 93 94
=—Go=S=Grr—
I3, Iy, I's
=GS-S

GPR rules



genetic Minimal Cut Sets — gMCSs

Identification of groups of metabolic genes, that, when simultaneously
inhibited, render celular proliferation impossible.



gMCSs — Our Approach

Based on:
. Optimization Theory genetic Minimal Cut Sets:
*  Duality Theory
* Linear Algebra

° g5

[ ]
Inputs: 91, 94

92! g31 g4

+ Template Metabolic Network
+ Target metabolic task
GPR rules

GPR rules

I. Apaolaza, 2017, Nature Communications



gMCSs — Our Approach

» A more efficient tool for the calculation of gMCSs was later implemented in the COBRA Toolbox,
gMCS function.

» Technical details can be found in |. Apaolaza et al, 2018, Bioinformatics.
» Some results (see poster 92 of Luis V. Valcarcel):

e 20,000 gMCSs for Recon3D in less than 48 hours (4 cores at 2.70 GHz, 16GB RAM).
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Heirendt et al, 2018,
Nature Protocols (accepted)
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Returning to our fundamental question:
A particular gene is essential if it is the only expressed gene in at least one gMCS
Gene laval
Reaction level
c
gMC5: a gMCS approach
F__u_____ﬂ_ ; :
| gMCS,: aﬂ| | Essential | Non-essential | Total
T —————— Achil N EMI,N ‘:f: 13:; 22? p-value = 3.78x10-16,
gMCS,;: aaﬂ i mTutal : orm 4881 =50 Odds Ratio (OR) = 3.62

|. Apaolaza, 2017, Nature Communications



gMCSs - Cancer

Log (2 #4%)

o

Cell proliferation (%)

gMCS = RRM1, ABAT, ALDH4A1, COASY, NSF, SDHB, SLC13A2, SLC25A10, SLC25A15, SLC25A19, SLC25A2, SLC37A1
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z-value = 2.7496
adj. p-value = 0.0298

[ Partner genes expressed
[ Partner genes not expressed

Essentiality of RRM1 (Ribonucleotide
Reductate Catalytic Subunit M1) in
different cancer cell lines

|. Apaolaza, 2017, Nature Communications



gMCSs — Cancer

» Reconstruction process is avoided to identify cancer-specific essential genes.
» Possibility to calculate gMCSs involving a particular gene knockout.

» Possibility to calculate gMCSs among a selected subset of genes (e.g. lowly expressed
genes).

» The expression of partner genes of a cancer-specific essential gene (e.g. RRM1) can be used
as response biomarkers.



gene & drug Minimal Cut Sets — gdMCSs

Minimal subsets of metabolic inhibitors (drugs) and gene knockouts
that render celular proliferation impossible.



gdMCSs — Our Approach

gsand g,

Based on: Example:
*  Optimization Theory Will d, be effective for a given
*  Duality Theory patient?

* Linear Algebra

Inputs: Translation:

* Template Metabolic Network Is there a gdMCS which contains
*+ Target metabolic task d, and lowly expressed genes

* GPRrules for the patient under study?

* Drug - Target Relationships

i i Solution:
Drug Target Relationships:
.- d;g, {d,, g,} is agdMCS. If g, is not expressed, the patient will
benefit from a therapy with d,.
In addition, g, is a biomarker for the effectiveness of therapy
with d.,.



gdMCSs — Methotrexate

» Targets Dihydrofolate Reductase, DHFR.

« DHFR is a metabolic gene which converts dihydrofolate into
tetrahydrofolate.

« Methotrexate is an interesting drug for our analysis since its mainly
interacts with metabolic targets.



gdMCSs — Methotrexate

gdMCS_1 « Itis a gdMCS in Recon2.v04 (I. Thiele et al, 2013, Nature
TK1_ Biotechnology) and Recon3D_301 ( E. Brunk et al, 2018, Nature
Biotechnology).
TK2
Methotrexate « TK2 commonly not expressed.
(- )
HYPOTHESIS

The expression level of TK1 will explain de effectiveness of
Methotrexate.




gdMCSs — Methotrexate
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ABSTRACT

Alterations in cancer genomes strongly influence
clinical responses to ftreatment and in many
instances are potent biomarkers for response to
drugs. The Genomics of Drug Sensitivity in Cancer
(GDSC) database [www.cancerRxgene.org) is the
largest public resource for information on drug
sensitivity in cancer cells and molecular markers
of drug response. Data are freely available without
restriction. GDSC currently contains drug sensitivity
data for almost 75000 experi describing
response to 138 anticancer drugs across almost
700 cancer cell lines. To identify molecular
markers of drug response, cell line drug sensitivity
data are integrated with large genomic datasets
obtained from the Catalogue of Somatic Mutations
in Cancer database, including information on
somatic mutations in cancer genes, gene
amplification and deletion, tissue type and tran-
scriptional data. Analysis of GDSC data is through
a web portal focused on identifying molecular bio-
markers of drug sensitivity based on queries of
specific anticancer drugs or cancer genes.
Graphical representations of the data are used
throughout with links to related resources and
all datasets are fully downloadable. GDSC provides
a unique resource incorporating large drug
sensitivity and genomic datasets to facilitate the
discovery of new therapeutic biomarkers for cancer
therapies.

INTRODUCTION

There is compelling evidence that alterations in cancer
genomes can strongly influence clinical responses to
anticancer therapies. Indeed, there are now several
examples where genomic changes can be used as molecular
biomarkers to identify patients most likely to benefit from
a treatment. For example, the use of drugs to target the
protein product of the BCR-ABL translocation in chronic
myeloid leukemia, or the BRAF gene in malignant
melanoma, has transformed the treatment of these
diseases and substantially improved survival rates (1.2).
Despite these notable successes, many cancer drugs in
use or development have not been linked to specific
genomic markers that could direct their clinical use to
maximize patient benefit. Moreover, even among appro-
priately selected patients, a poorly explained range of
clinical responses is observed (2.3). Thus, there exists a
need for the development of new and improved bio-
markers to guide therapies and ultimately improve
clinical responses.

Recent vears have seen significant advances in our
understanding of the molecular nature of cancer (4).
This has been driven in part by advances in high-
throughput technologies and. in particular, DNA
sequencing technologies that allow us to sequence on a
scale that was previously unthinkable. In the near
future, sequencing efforts will provide a complete descrip-
tion of the genomic changes that occur in many cancer
subtypes. A complete list of the repertoire of cancer
genes will provide profound insights into the origins, evo-
lution and progression of cancer and will act as an impetus
for the development of new cancer therapies.
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IC50 values of Methotrexate for 533
cell lines from Genomics of Drug
Sensitivity (GDSC) and gene
expression data from the Cancer Cell
Line Encyclopedia

We expect a higher expression of the

partner genes (TK1 and TK2) in those

cell lines with a higher IC50 value of
Methotrexate.



gdMCS_1
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log2(IC50)
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Future Directions

NB (5)

CB (7)
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Example of desireable target gene: essential for some patients and MM especific
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Integration of RNA-seq data from MM patients
and healthy cells (Poster 92).

Application of our approach to target tamoxifene-
resistance breast cancer tumors

In-vitro validation of synergy of TK1 knockout and
methotrexate.

Minimal strategies involving nutrient restrictions
and gene knockouts.

Integration of tracer-based metabolomics data.

Accounting for cellular adaptation to our
intervention.

Extend our approach to signalling and regulatory
networks.
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