A morphologically-detailed neuronal network simulation library for contemporary high performance computing architectures
AGENDA

Insights into Arbor
 Introduction
 Features
 Model
 Performance

Hands-on session
 Build and run a ring network with python

This presentation is provided under the terms of the Creative Commons Attribution-ShareAlike License 4.0.
RECENT COLLABORATORS
From different institutions

- Ben Cumming
- Stuart Yates
- Nora Abi Akar
- Vasileios Karakasis
- Alexander Peyser
- Wouter Klijn
- Anne Küsters
- Felix Huber
- Simon Oerl
- Susanne Kunkel

openly available @ https://github.com/arbor-sim/arbor
WHAT IS ARBOR?

A morphologically-detailed neuronal network simulation library for contemporary HPC architectures

A library for the simulation

- of large networks of morphologically-detailed, spiking neurons
- for all HPC systems in the HBP

Runs on multiple architectures

- GPU systems,
- vectorized multicore,
- Intel AVX and laptops

Modular design for extensibility to new computer architectures
WHY ARBOR?

To solve multi-compartment simulations with large networks on new HPC architectures

Problems and models that are challenging to explore with current software and systems, e.g.

- Near real-time multi-compartment simulations
- Large networks with long simulations, parameter search, statistical validation
- Field potential calculations of large networks with volume visualization

Adapting existing simulators to new HPC architectures is hard, e.g. for

- Highly parallel architectures such as Intel Xeon and Intel KNL
- Wider vector operations such as AVX, AVX2, AVX512
- Specialized accelerator hardware as GPUs

Source of picture: flaticon.com
FEATURES OF ARBOR

Aiming for interoperability by being a simulator as library

Interoperability
Simulator as library

- **Visualization** (with coupling to in-situ visualization and analysis tools*)
- **Multi-physics**: can be integrated with other tools
- **Multi-scale** from single neurons to large multi-compartmental networks
- **Usability**: installable target and simple configuration, python front-end (as basis for PyNN integration*), efficient sampling of voltage and currents

Extensibility
Modular internal API

Performance
HPC targeted

* available soon

Source of picture: flaticon.com
FEATURES OF ARBOR

Aiming for Extensibility by having modular internal API

Interoperability
Simulator as library

Extensibility
Modular internal API

- New integration schemes, (high-order time stepping, error control, and efficient gap junction schemes*)
- Custom spike communication and event systems, API for receiving spikes live from external simulators (e.g. NEST*)
- Specialized cells: leaky integrate-and-fire, Hodgkin-Huxley, Poisson spikes

Performance
HPC targeted

* available soon
FEATURES OF ARBOR

Aiming for high performance on HPC targets

Interoperability
Simulator as library

Extensibility
Modular internal API

Performance
HPC targeted

- Highly parallel and performance portable with task-based threading implementation, GPU and SIMD vector targets using NMODL and modcc
- Design for scalability with fine-grained allocation of CPU and GPU resources
- Reporting on memory and energy consumption
- Unit testing, continuous integration*, validation and a benchmarking suite*

* available soon

Source of picture: flaticon.com
INTRODUCTION

Summary

• Arbor is a new library for simulation of morphologically detailed spiking network
 • Specialized for GPUs, vectorized multicore, AVX and laptops
 • Designed to handle very large, very long and computationally intensive problems
• Goals:
 • Interoperability with visualizations and simulators at other scales/problems
 • Modular internal API for extensibility for custom integration, spike communication and cell types
 • And targeted to highly parallel architectures, both existing and emerging
 • with an open development model, validation and testing
NEURON MODEL

Arbor simulates networks of multi-compartment neurons

- **Neurons**: approximated by axonal delay, synaptic functions and a set of cables (for dendrites + soma) connected in a tree.
- **Cables**: characterized as 1D electrical compartments (of variable diameter) composed of ion channels, cable resistance and capacitance.
- Neurons represented as sparse, close-to-band matrices to be solved (e.g. by Hines solver) against known current states due to synaptic conductance.
- **Network** and spike exchange between neurons at synapses are represented by concatenations of matrices.

Source: Koch, Methods in Neuronal Modeling: From Ions to Networks
A cell is modelled as a branching, one-dimensional electrical system

\[
\frac{\partial}{\partial x} \left(\sigma \frac{\partial v}{\partial x} \right) = \left(c_m \cdot \frac{\partial v}{\partial t} + \sum_{\text{channels } k} g_k(s_k(x, t))(v - e_k^{\text{rev}}) \right) \cdot \frac{\partial S}{\partial x} \\
+ \sum_{\text{synapses } k} I_k^{\text{syn}}(s_k^{\text{syn}}(t), v(x_k^{\text{syn}})) \delta x_k^{\text{syn}} \\
+ \sum_{\text{injections } k} I_k^{\text{inj}}(t) \delta x_k^{\text{inj}},
\]

with

- Axial conductivity \(\sigma \) of the intracellular medium
- Membrane areal capacitance \(c_m \), areal conductance \(g_k \) for an ion channel of type \(k \) as a function of channel's state \(s_k \)
- Corresponding reversal potential \(e_k^{\text{ref}} \)
- Membrane surface area \(S(x) \) as a function of axial distance \(x \)
- Current \(I_k^{\text{syn}} \) produced by a synapse at position \(x_k^{\text{syn}} \) as a function of the synaptic state \(s_k^{\text{syn}} \) and local voltage
- Injected current \(I_k^{\text{inj}}(t) \) at position \(x_k^{\text{inj}} \)

\[
\frac{d}{dt}s_k(x, t) = f_k(s_k, v(x, t)), \\
\frac{d}{dt}s_k^{\text{syn}}(t) = f_k^{\text{syn}}(s_k^{\text{syn}}, v(x_k^{\text{syn}}, t), t),
\]

\(\delta x_k \) and \(\delta x_k^{\text{syn}} \) are infinitesimal changes in the membrane or synaptic state.
NUMERICAL MODEL

Cell state evolution is numerically solved with first order methods

- **Space discretization:**

 Vertex-centered 1D finite volume method using first-order approximation for axial current flux

 \[
 \frac{c_i}{\delta t} V_i' + \sum_j \sigma_{i,j} V_j' - \sum_j \sigma_{i,j} V_j' = -I_i^{\text{memb}} + \frac{c_i}{\delta t} V_i
 \]

 - **Voltage and channel state time evolution split:**

 Lie-Trotter

 - **Time discretization:**

 First-order implicit Euler integration

 - **Channel state ODEs:**

 Integration with updated voltages depending on set of ODEs
CELL SIMULATION

Most time consuming parts on a CPU are updating currents and integrating gating variables.
DESIGN MODEL

Scalability through the abstraction of recipes

<table>
<thead>
<tr>
<th>Cells</th>
<th>Recipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A “cell” represents the smallest model to be simulated</td>
<td>• A “recipe” describes models in a cell-oriented manner and supplies methods to</td>
</tr>
<tr>
<td>• A “cell” forms the smallest unit of work distributed across processes</td>
<td>• Map global cell identifier gid to cell type</td>
</tr>
<tr>
<td>• Types:</td>
<td>• Describe cells</td>
</tr>
<tr>
<td>• Specialized leaky integrate-and-fire cells</td>
<td>• List all connections from other cells that terminate on a cell</td>
</tr>
<tr>
<td>• Artificial spike sources</td>
<td>• Advantage: parallel instantiation of cell data</td>
</tr>
<tr>
<td>• Multi-compartment cells</td>
<td></td>
</tr>
</tbody>
</table>
DESIGN MODEL

Extensibility through cell group abstraction

<table>
<thead>
<tr>
<th>Cell groups</th>
<th>Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A “cell group” represents a collection of cells of the same type together with implementation of their simulation</td>
<td>• In a recipe, mechanisms are specifications of ion channel and synapse dynamics</td>
</tr>
<tr>
<td>• Partitioning into cell groups provided by decomposition</td>
<td>• Implementations of mechanisms:</td>
</tr>
<tr>
<td>• A “simulation” manages instantiation of model and scheduling of spike exchange as well as integration for each cell group</td>
<td>- Hand-coded for CPU/ GPU execution or</td>
</tr>
<tr>
<td></td>
<td>- A translator (modcc) is used to compile a subset of NEURONs mechanism specification language NMODL to architecture-optimized vectorized C++ or CUDA source</td>
</tr>
</tbody>
</table>
MODEL

Summary

- Arbor models:
 - Multicompartement neurons using a cable model transformed into a sparse matrix
 - Neurons characterized by axonal delays, synaptic functions and cables connected in a tree
 - Spike exchanges are global across computer nodes, functionally concatenating matrices
 - Numerical solutions are discretized in time and space, and channel states are discretized ODEs
 - Accelerator (GPU) optimization is focused on updating currents and integrating gating variables
- Models are composed of:
 - Cells representing the small unit of computation (LIF, Artificial sources, Multicompartement cells)
 - Recipes representing a parallelizable set of neuron construction and connections
 - Cell groups computed together on the GPU or CPU
 - Mechanism representing ion channel and synapse dynamics
SPIKE EXCHANGE

With a minimum delay

Overlapping computation and communication with a minimum spike propagation delay ΔT

Integration of states in epoch i requires spikes from epoch $i - 2$ and are exchanged in epoch $i - 1$. Reason: latency hiding
DESIGN MODEL

Programming interface ensures extensibility

- Components can be substituted according to the internal API.
- Models are described in **NMODL**, a DSL used for the NEURON simulator.
- **Python interface** for building networks is under development.
DESIGN MODEL

Computational work is hidden in backends

- Cell simulation modules share **computational backends** for channel and synapse state evolution.
- CPU-hosted **finite volume** cell simulation.
STRUCTURE

Summary

- Spikes are exchanged at ½ the minimal spike propagation delay to overlap computation and communication
- Internal API uncouples model description, execution, spike exchange and cell simulation
- Computational work is hidden in pluggable backends, allowing automatic generation for different architectures
- Python interface is under development
VECTORIZATION PERFORMANCE

Used systems and benchmark model

Systems

<table>
<thead>
<tr>
<th>CPU</th>
<th>cores</th>
<th>threads</th>
<th>ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaby Lake i7</td>
<td>2</td>
<td>4</td>
<td>AVX-2</td>
</tr>
<tr>
<td>Broadwell</td>
<td>18</td>
<td>36</td>
<td>AVX-2</td>
</tr>
<tr>
<td>Skylake-X</td>
<td>18</td>
<td>36</td>
<td>AVX-512</td>
</tr>
<tr>
<td>KNL</td>
<td>64</td>
<td>256</td>
<td>AVX-512</td>
</tr>
</tbody>
</table>

Benchmark model

- Cells: 300 compartments with Hudgkin-Huxley mechanisms, 5,000 randomly connected exponential synapses
- Network: 100 cells per single core, 1000 cells per socket
- Duration: 100 ms
VECTORIZATION PERFORMANCE

Comparison of explicit vectorization relative to the compiler’s auto-vectorization

![Graph showing speedup comparison]

Speedup of total time to solution with vectorization
- **1.5 x** for Broadwell socket
- **3.4 x** for KNL socket

Use of **data-pattern optimized loads and stores** contributes to speedup.

Less improvement for Broadwell due to **poor performance of vectorized division**.
PERFORMANCE BENCHMARKS

Setup of ring network on HPC architecture

<table>
<thead>
<tr>
<th>System</th>
<th>Daint-mc</th>
<th>Daint-gpu</th>
<th>Tave-knl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Broadwell</td>
<td>Haswell</td>
<td>KNL</td>
</tr>
<tr>
<td>memory</td>
<td>64 GB</td>
<td>32 GB</td>
<td>96 GB</td>
</tr>
<tr>
<td>cores/socket</td>
<td>18</td>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>threads/core</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>vectorization</td>
<td>AVX2</td>
<td>AVX2</td>
<td>AVX512</td>
</tr>
<tr>
<td>accelerator</td>
<td>–</td>
<td>P100 GPU</td>
<td>–</td>
</tr>
<tr>
<td>MPI ranks</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>threads/rank</td>
<td>36</td>
<td>24</td>
<td>64</td>
</tr>
<tr>
<td>configuration</td>
<td>–</td>
<td>CUDA 9.2</td>
<td>cache,quadrant</td>
</tr>
<tr>
<td>compiler</td>
<td>GCC 7.2.0</td>
<td>GCC 6.2.0</td>
<td>GCC 7.2.0</td>
</tr>
</tbody>
</table>

Ring model

- **Cells:** Randomly generated morphologies with on average 130 compartments
- **Synapses:** 10 000 exponential synapses per cell with only one synapse connected to a spike detector on the preceding cell
- **Soma:** Hodgkin-Huxley mechanism;
- **Dendrites:** Passive conductance
PERFORMANCE

Single node scaling - time: utilization of computational resources on one node at various model sizes

- Models with fewer cells take less time to execute
- Scaling is architecture and model size dependent
 - MC scales well for 64 or more cells
 - KNL scales well for 512 or more cells
 - GPU scales well for 1024 or more cells
- Below scaling thresholds node resources are under-utilized
- GPU catches up at 4000 cells
PERFORMANCE

Single node scaling – speedup: comparison with NEURON

Memory
- Arbor significantly more **memory efficient** with 4.4 GB for 16k model,
- NEURON unable to run 16k model due to running out of 64 GB memory available on Daint-mc

Speedup
- Arbor is **faster for all model sizes** with speedup increasing with model size
- 5-10x faster for less than 128 cells
- over 20x faster for more than 256 cells
PERFORMANCE BENCHMARKS

Setup of connectivity model on HPC architecture

10k connectivity model

- Cells: As in ring model with 16k cells for duration of 100 ms
- Network: 10 000 way randomly connected with no self-connections
- Minimal delay: 10 ms or 20 ms
- Synapses: All excitatory
- Spiking: All cells spike synchronously with frequency 100 Hz or 50 Hz
PERFORMANCE

Strong scaling: minimizing time to solution for a fixed model size with increasing number of nodes

- For less than 4k cells (on 4 nodes) **multicore and GPU are equivalent** (within 10% range)
- For more than 4k cells **multicore is faster**
- A KNL node is uniformly slower than multicore, using **1.4x more time**
- Still, Arbor can be **used effectively** on an HPC system available
PERFORMANCE

Strong scaling efficiency

- **Resource utilization is effective** where strong scaling efficiency is good
- **Efficiency decreases** as the number of nodes increases
- Only the multicore system scales with **90% efficiency** to 64 nodes (256 cells per node) and minimizes time-to-solution
- **GPU system is still effective** for running large models
PERFORMANCE

Strong scaling: consumed resources in node-seconds and energy consumption

![Graph showing strong scaling of consumed resources in node-seconds and energy consumption for Daint-mc, Daint-gpu, and Tave-knl. The x-axis represents the number of nodes (1 to 64), and the y-axis represents node-seconds and energy (kJ). The graphs illustrate how resources and energy consumption increase with more nodes.]
PERFORMANCE BENCHMARKS

Setup of dry-run mode on HPC architecture

<table>
<thead>
<tr>
<th>System</th>
<th>Daint-mc</th>
<th>Daint-gpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Broadwell</td>
<td>Haswell</td>
</tr>
<tr>
<td>memory</td>
<td>64 GB</td>
<td>32 GB</td>
</tr>
<tr>
<td>cores/socket</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>threads/core</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>vectorization</td>
<td>AVX2</td>
<td>AVX2</td>
</tr>
<tr>
<td>accelerator</td>
<td>–</td>
<td>P100 GPU</td>
</tr>
<tr>
<td>MPI ranks</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>threads/rank</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>configuration</td>
<td>–</td>
<td>CUDA 9.2</td>
</tr>
<tr>
<td>compiler</td>
<td>GCC 7.2.0</td>
<td>GCC 6.2.0</td>
</tr>
</tbody>
</table>

Dry-run mode

- **Model:** 100 ms simulation with 10 ms delay and cells firing at 87.5 Hz each cell connected to 10 000 random cells with no self-connection
- **Mode:** Run model on single MPI rank, and mimic running on a large cluster (here: 10 000 nodes) by generating proxy spikes from cells on other ranks
- **Cells/ node:** 1000 & 10 000 cells per node for total model size of 10 M & 100 M cells
PERFORMANCE

Weak scaling is near perfect

Maximize model size while increasing number of nodes with fixed number of cells to hundreds of nodes

- Arbor weak scales (near) perfectly on multicore and GPU
PERFORMANCE

Weak scaling sufficient with 80% at extreme scale

To 10,000 nodes

- 1,000 nodes: 1k and 10k models weak scale very well with 99% and 95% efficiency
- 10,000 nodes: weak scaling still good with 87% and 79% for 1k and 10k models, but decreased due to spike communication and processing
Performance

Summary

- Arbor has been tested on a variety of vectorized CPU architectures, showing significant improvement over compiler auto-vectorization
- Synthetic networks have been tested on multicore, GPU and KNL architectures
 - Close to linear single node scaling, with comparable performance at >1000 cells
 - More memory efficient than standard NEURON, with speedup’s of 5-30x as cell numbers increase
- Strong scaling has been shown for up to 10k cells with good energy consumption scaling
- Weak scaling is near perfect up to 128 nodes (1 million cells)
 - Even at 10k nodes, weak scaling is still at 79%
CONCLUSION

Summary

• Arbor is an extensible library for multicompartment neuron models
• It is designed with the goal of optimizing usage of current HPC architectures and is ready to be ported to future architectures
• Development is fully open, developed from scratch, developed by software engineers at supercomputing centers
• It uses standard cell and network formalisms with a focus on performance
 • A subset of NMODL descriptions can be used
 • A python interface is under development
• We have focused on synthetic verification, testing and performance benchmarks
 • Current architectures are standard cpus, vectorized cpus, many core and GPUs
 • Weak and strong scaling have been shown up to 10 000 nodes
 • 5-30x faster than standard NEURON for tested morphologies and networks