The Mont-Blanc approach towards Exascale

Alex Ramirez
Barcelona Supercomputing Center

Disclaimer: Not only I speak for myself ... All references to unavailable products are speculative, taken from web sources. There is no commitment from ARM, Samsung, Intel, Nvidia, or others, implied.
Outline

• A bit of history
 • Vector supercomputers
 • Commodity supercomputers
 • The next step in the commodity chain

• Supercomputers from mobile components
 • Homogeneous architecture
 • Compute accelerators
 • Rely on OmpSs to handle the challenges

• BSC prototype roadmap

• Mont-Blanc project goals
In the beginning ... there were only supercomputers

- Built to order
 - Very few of them
- Special purpose hardware
 - Very expensive
- Control Data, Convex, ...
- Cray-1
 - 1975, 160 MFLOPS
 - 80 units, 5-8 M$
- Cray X-MP
 - 1982, 800 MFLOPS
- Cray-2
 - 1985, 1.9 GFLOPS
- Cray Y-MP
 - 1988, 2.6 GFLOPS
- Fortran+vectorizing compilers
The Killer Microprocessors

- Microprocessors killed the Vector supercomputers
 - They were not faster ...
 - ... but they were significantly cheaper and greener
- Need 10 microprocessors to achieve the performance of 1 Vector CPU
 - SIMD vs. MIMD programming paradigms
Then, commodity took over special purpose

- **ASCI Red, Sandia**
 - 1997, 1 Tflops (Linpack),
 - 9298 cores @ 200 Mhz
 - 1.2 Tbytes
 - Intel Pentium Pro
 - Upgraded to Pentium II Xeon, 1999, 3.1 Tflops

- **ASCI White, LLNL**
 - 2001, 7.3 TFLOPS
 - 8192 proc. @ 375 Mhz,
 - 6 Tbytes
 - (3+3) Mwats
 - IBM Power 3

Message-Passing Programming Models
Finally, commodity hardware + commodity software

- MareNostrum
 - Nov 2004, #4 Top500
 - 20 Tflops, Linpack
 - IBM PowerPC 970 FX
 - Blade enclosure
 - Myrinet + 1 GbE network
 - SuSe Linux
The next step in the commodity chain

- Total cores in Jun'12 Top500
 - 13.5 Mcores
- Tablets sold in Q4 2011
 - 27 Mtablets
- Smartphones sold Q4 2011
 - > 100 Mphones
• IBM BG/Q and Intel AVX implement DP in 256-bit SIMD
 • 8 DP ops / cycle
• ARM quickly moved from optional floating-point to state-of-the-art
 • ARMv8 ISA introduces DP in the NEON instruction set (128-bit SIMD)
ARM processor efficiency vs. IBM / Intel / Nvidia

- **Cortex-A15 @ 2 GHz**: 32 GFLOPS (4-core)
- **Cortex-A9 @ 1 GHz**: 2 GFLOPS (2-core)
- **BG/Q @ 1.6 GHz**: 205 GFLOPS (16-core)
- **ARM11 @ 482 MHz**: 0.5 GFLOPS

* Based on ARM Cortex-A9 @ 2GHz power consumption on 45nm, not an ARM commitment.
Are the “Killer Mobiles™” coming?

- Where is the sweet spot? Maybe in the low-end ...
 - Today ~ 1:8 ratio in performance, 1:100 ratio in cost
 - Tomorrow ~ 1:2 ratio in performance, still 1:100 in cost?
- The same reason why microprocessors killed supercomputers
 - Not so much performance ... but much lower cost, and power
Killer mobile™ example: Samsung Exynos 5450 *

- 4-core ARM Cortex-A15 @ 2 GHz
 - 32 GFLOPS
- 8-core ARM Mali T685
 - 168 GFLOPS*
- Dual channel DDR3 memory controller
- All in a low-power mobile socket

* Data from web sources, not an ARM or Samsung commitment
Are we building BlueGene again?

- Yes ...
 - Exploit Pollack's Rule in presence of abundant parallelism
 - Many small cores vs. Single fast core

- ... and No
 - Heterogeneous computing
 - On-chip GPU
 - Commodity vs. Special purpose
 - Higher volume
 - Many vendors
 - Lower cost
 - Lots of room for improvement
 - No SIMD / vectors yet ...
 - Build on Europe's embedded strengths
Can we achieve competitive performance?

• 2-socket Intel Sandy Bridge
 • 370 GFLOPS
 • 1 address space
 • 44 MB on-chip memory
 • 136 GB/s
 • 64 GB/s intra-node (2 x QPI)

• 8-socket ARM Cortex A-15
 • 256 GFLOPS
 • 8 address spaces
 • 16 MB on-chip memory
 • 102 GB/s
 • 1 Gb/s intra-node (1 GbE)

September 13, 2012
Can we achieve competitive performance?

- Sandy Bridge + Nvidia K20
 - 1685 GFLOPS
 - 2 address spaces
 - 32 GB/s between CPU-GPU
 - 16x PCIe 3.0
 - 68 + 192 GB/s

- 8-socket Exynos 5450
 - 1600 GFLOPS
 - 16 address spaces
 - 12.8 GB/s between CPU-GPU
 - Shared memory
 - 102 GB/s
Then, what is so good about it?

• Sandy Bridge + Nvidia K20
 - $3000
 - > 400 Watt

• 8-socket Exynos 5450
 - $200
 - < 100 Watt
There is no free lunch

- 2X more cores for the same performance
- 8X more address spaces
- ½ on-chip memory / core
- 1 GbE inter-chip communication
OmpSs runtime layer manages architecture complexity

- Programmer exposed a simple architecture
- Task graph provides lookahead
 - Exploit knowledge about the future
- Automatically handle all of the architecture challenges
 - Strong scalability
 - Multiple address spaces
 - Low cache size
 - Low interconnect bandwidth
- Enjoy the positive aspects
 - Energy efficiency
 - Low cost
A big challenge, and a huge opportunity for Europe

Prototypes are critical to accelerate software development
- System software stack + applications

Built with the best of the market
- 256 nodes
- 250 GFLOPS
- 1.7 Kwatt

Built with the best that is coming

What is the best that we could do?

GFLOPS/W

September 13, 2012
Very high expectations ...

- High media impact of ARM-based HPC
- Scientific, HPC, general press quote Mont-Blanc objectives
 - Highlighted by Eric Schmidt, Google Executive Chairman, at the EC's Innovation Convention
The hype curve

- We'll see how deep it gets on the way down...

Peak of Inflated Expectations
Plateau of Productivity
Slope of Enlightenment
Trough of Disillusionment

Visibility vs Time
Technology Trigger
Project goals

- To develop an **European** Exascale approach
- Based on embedded **power-efficient technology**

Objetives

- Develop a first prototype system, limited by available technology
- Design a Next Generation system, to overcome the limitations
- Develop a set of Exascale applications targeting the new system