
Richard Graham

MPI 3.0 And Beyond

© 2013 Mellanox Technologies 2

Contributing Organizations

 Argonne National Laboratory

 Bull

 Cisco Systems, Inc

 Cray Inc.

 CSCS

 ETH Zurich

 Fujitsu Ltd.

 German Research School for Simulation
Sciences

 The HDF Group

 Hewlett-Packard

 International Business Machines

 IBM India Private Ltd

 Indiana University

 Institut National de Recherche en Informatique
et Automatique (INRIA)

 Institute for Advanced Science &

Engineering Corporation

 Intel Corporation

 Lawrence Berkeley National Laboratory

 Lawrence Livermore National Laboratory

 Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

 NEC Corporation

 National Oceanic and Atmospheric

Administration, Global Systems Division

 NVIDIA Corporation

 Oak Ridge National Laboratory

 The Ohio State University

© 2013 Mellanox Technologies 3

Contributing Organizations

 Argonne National Laboratory

 Bull

 Cisco Systems, Inc

 Cray Inc.

 CSCS

 ETH Zurich

 Fujitsu Ltd.

 German Research School for Simulation
Sciences

 The HDF Group

 Hewlett-Packard

 International Business Machines

 IBM India Private Ltd

 Indiana University

 Institut National de Recherche en Informatique
et Automatique (INRIA)

 Institute for Advanced Science &

Engineering Corporation

 Intel Corporation

 Lawrence Berkeley National Laboratory

 Lawrence Livermore National Laboratory

 Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

 NEC Corporation

 National Oceanic and Atmospheric

Administration, Global Systems Division

 NVIDIA Corporation

 Oak Ridge National Laboratory

 The Ohio State University

© 2013 Mellanox Technologies 4

Contributing Organizations – Cont’d

 Oracle America

 Platf

 RIKEN AICS

 RunTime Computing Solutions, LLC

 Sandia National Laboratories

 Technical University of Chemnitz

 Tokyo Institute of Technology

 University of Alabama at Birmingham

 University of Chicago

 University of Houston

 University of Illinois at Urbana-Champaign

 University of Stuttgart, High Performance

Computing Center Stuttgart (HLRS)

 University of Tennessee, Knoxville

 University of Tokyoorm Computing

© 2013 Mellanox Technologies 5

Outline

 MPI 3.0 Goals

 MPI 3.0 major additions
• Nonblocking collectives

• MPI Tool Interface

• Noncollective communicator creation

• RMA enhancements

• New Fortran bindings

• Neigborhood collectives

• Enhanced Datatype support

• Large data counts

• Matched probe

• Topology Aware Communicator Creation
 What did not make it into MPI 3.0

 What was removed from MPI

 What was deprecated from MPI

 Expected Implementation Timelines

 What next ?

© 2013 Mellanox Technologies 6

MPI 3.0 - Scope

Additions to the standard that are needed for better platform and application

support. These are to be consistent with MPI being a library providing process
group management and data exchange. This includes, but is not limited to,
issues associated with scalability (performance and robustness), multi-core
support, cluster support, and application support.

Backwards compatibility may be maintained -
Routines may be deprecated or deleted

© 2013 Mellanox Technologies 7 © MELLANOX TECHNOLOGIES 7

Nonblocking Collectives

© 2013 Mellanox Technologies 8

Nonblocking Collective Operations

Idea

• Collective communication initiation and completion separated

• Offers opportunity to overlap computation and communication

• Each blocking collective operation has a corresponding nonblocking operation

• May have multiple outstanding collective communications on the same

communicator

• Ordered initialization

© 2013 Mellanox Technologies 9 © MELLANOX TECHNOLOGIES 9

Neighborhood Collectives

© 2013 Mellanox Technologies 10

Sparse Collective Operations on Process Topologies 21

 MPI process topologies (Cartesian and (distributed) graph) usable for communication

• MPI_NEIGHBOR_ALLGATHER(V)

• MPI_NEIGHBOR_ALLTOALL(V,W)

• Also nonblocking variants

 If the topology is the full graph, then neighbor routine is identical to full collective communication

routine

• Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

 Allow for optimized communication scheduling and scalable resource binding

© 2013 Mellanox Technologies 11 © MELLANOX TECHNOLOGIES 11

MPI Tool Interface

© 2013 Mellanox Technologies 12

New MPI Tools Chapter (Chapter 14)

 Replaces the existing Profiling Interface Chapter

 Two subsections:

• MPI Profiling Interface, aka. PMPI or MPI interpositioning interface

- Unchanged capabilities to MPI 2.2

- Minor extensions and clarifications to work with new Fortran bindings

• MPI Tool Information Interface, aka. the MPI_T interface

- Access to internal, potentially implementation specific information

- Two types of information:

 Control: typically used for configuration information

 Performance: typically used to report MPI internal performance data

- “PAPI-like” interface for software counters within MPI

© 2013 Mellanox Technologies 13

Overview of MPI_T Functionality

Goal: provide tools with access to MPI internal information
• MPI implementation agnostic: tools query available information
• Access to configuration/control and performance variables

Two phase approach
• Tool/Users queries all existing variables by name
• Once variable has been found, allocate handle for access
• With handle, variable contents can be read (and possibly written)

Additional features/properties:
• MPI_T can be used before MPI_Init / after MPI_Finalize
• Optional variable grouping and access to semantic information

Examples for Control Vars.
 Parameters like Eager Limit

 Startup control

 Buffer sizes and management

Examples of Performance Vars.
 Number of packets sent

 Time spent blocking

 Memory allocated

© 2013 Mellanox Technologies 14

Some of MPI_T’s Concepts

Query API for all MPI_T variables / 2 phase approach
• Setup: Query all variables and select from them
• Measurement: allocate handles and read variables

• Other features and properties

- Ability to access variables before MPI_Init and after MPI_Finalize

- Optional scoping of variables to individual MPI objects, e.g., communicator

- Optional categorization of variables

Return Var.
Information

MPI Implementation with MPI_T

User Requesting a Performance Variable from MPI_T

Query All
Variables

Measured Interval

Start
Counter

Stop
Counter

Counter
Value

© 2013 Mellanox Technologies 15 © MELLANOX TECHNOLOGIES 15

Noncollective Communicator Creation

© 2013 Mellanox Technologies 16

Group-Collective Communicator Creation

MPI-2: Comm. creation is collective

MPI-3: New group-collective creation
• Collective only on members of new comm.

1. Avoid unnecessary synchronization
• Enable asynchronous multi-level parallelism

2. Reduce overhead
• Lower overhead when creating small communicators

3. Recover from failures
• Failed processes in parent communicator can’t participate

4. Enable compatibility with Global Arrays
• In the past: GA collectives implemented on top of MPI Send/Recv

© 2013 Mellanox Technologies 17 © MELLANOX TECHNOLOGIES 17

RMA Enhancements

© 2013 Mellanox Technologies 18

MPI-3 RMA

 Major Extension to RMA

• New capabilities

• Backward compatibility to MPI 2.2

 Major Extensions

• New ways to create MPI Windows

• New read-modify-write operations

• New Request-based operations

• New synchronization operations

• Additional memory model for cache-coherent systems

• Other extensions to simplify use

© 2013 Mellanox Technologies 19

New Ways to Create MPI_Win

 MPI_Win_allocate

• Allocate memory at creation; permits coordinated allocation (e.g., symmetric allocation for scalability)

 MPI_Win_create_dynamic

• Attach (and detach) memory after creation; permits more dynamic use of MPI RMA

 MPI_Win_allocate_shared

• Allocate shared memory (where supported); permits direct (load/store) use of shared memory within MPI-only

programs

© 2013 Mellanox Technologies 20

New Read-Modify-Write Operations

 MPI_Get_accumulate – Extends MPI_Accumulate to also return value

 MPI_Fetch_and_op, MPI_Compare_and_swap – Atomic, single word updates; intended to provide

higher performance than general MPI_Get_accumulate

 Now possible to build O(1) mutex; perform mutex-free updates

© 2013 Mellanox Technologies 21

New Request-Based Operations

 MPI_Rput, MPI_Rget, MPI_Raccumulate, MPI_Rget_accumulate

• Provide MPI request; can use any MPI request test or completion operation (e.g., MPI_Waitany)

• Only valid within passive-target epoch

- E.g., between MPI_Win_lock/MPI_Win_unlock

• Provides one way to complete MPI RMA operations within a passive target epoch

© 2013 Mellanox Technologies 22

New Synchronization Operations

 Permitted only within passive target epoch

 Flush

• MPI_Win_flush, MPI_Win_flush_all completes all pending RMA operations at origin and target

• MPI_Win_flush_local, MPI_Win_flush_local_all completes all pending RMA operations at origin

 Sync

• Synchronizes public and private copies of win (refers to MPI memory model and subtle issues of memory

consistency)

 Request operations (the “R” versions) on previous slide

• Permit completion of specific RMA operations

© 2013 Mellanox Technologies 23

New “Unified” Memory Model

 MPI 2 RMA Memory model does not require cache coherence; matched fastest systems at the time.

Now called the “Separate” model, reflecting the description of public and private copies

 MPI 3 adds new “Unified” Memory model, reflecting the fact that the public and private copies are

the same memory

 Users can query which is supported (new MPI_WIN_MODEL attribute on an MPI window)

© 2013 Mellanox Technologies 24

Other MPI RMA Extensions

 Some behavior, such as conflicting accesses, now have undefined behavior rather than erroneous

• Behavior of correct MPI 2.2 programs unchanged; simplifies use of MPI as a target for other RMA programming

models that allow conflicting accesses

 Accumulate operations ordered by default

• No “right” choice – some algorithms much easier if RMA operations ordered; some hardware much faster if

ordering not required.

• Info key “accumulate_ordering” (on window create) can request relaxation of ordering

 New MPI_Win_lock_all/MPI_Win_unlock_all for passive target epoch for all processes in Win.

© 2013 Mellanox Technologies 25 © MELLANOX TECHNOLOGIES 25

New Fortran Bindings

© 2013 Mellanox Technologies 26

Three methods of Fortran support

 USE mpi_f08 26

• This is the only Fortran support method that is consistent with the Fortran standard (Fortran 2008 + TR 29113
and later).

• This method is highly recommended for all MPI applications.

• Mandatory compile-time argument checking & unique MPI handle types.

• Convenient migration path.

 USE mpi
• This Fortran support method is inconsistent with the Fortran standard, and its use is therefore not

recommended.

• It exists only for backwards compatibility.

• Mandatory compile-time argument checking (but all handles match with INTEGER). 39

 INCLUDE ‘mpif.h’
• The use of the include file mpif.h is strongly discouraged starting with MPI-3.0. 40

• Does not guarantees compile-time argument checking.

• Does not solve the optimization problems with nonblocking calls,

• and is therefore inconsistent with the Fortran standard.

• It exists only for backwards compatibility with legacy MPI applications.

new

new

© 2013 Mellanox Technologies 27

The mpi_f08 Module

 Example:

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) BIND(C)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf 28

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm 27

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror 38

MPI_Wait(request, status, ierror) BIND(C)

TYPE(MPI_Request), INTENT(INOUT) :: request 30

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror 29

Mainly for implementer’s
reasons.

Not relevant for users.

Fortran compatible buffer
declaration allows correct

compiler optimizations

Unique handle types allow
best compile-time argument

checking

OPTIONAL ierror:

MPI routine can be called
without ierror argument

Status is now a
Fortran structure, i.e.,
a Fortran derived type

INTENT Compiler-based
optimizations & checking

new

© 2013 Mellanox Technologies 28

Other enhancements

 Unused ierror

INCLUDE ‘mpif.h’

! wrong call:

CALL MPI_SEND(…., MPI_COMM_WORLD)

! terrible implications because ierror=0 is written somewhere to the memory

 With the new module 29

USE mpi_f08

! Correct call, because ierror is optional:

CALL MPI_SEND(…., MPI_COMM_WORLD)

new

© 2013 Mellanox Technologies 29

Other enhancements, continued

 With the mpi & mpi_f08 module:

• Positional and keyword-based argument lists 33

- CALL MPI_SEND(sndbuf, 5, MPI_REAL, right, 33, MPI_COMM_WORLD)

- CALL MPI_SEND(buf=sndbuf, count=5, datatype=MPI_REAL,

 dest=right, tag=33, comm=MPI_COMM_WORLD)

• Remark: Some keywords are changed since MPI-2.2 33

- For consistency reasons, or

- To prohibit conflicts with Fortran keywords, e.g., type, function.

The keywords are defined in the language bindings.
Same keywords for both modules.

new

© 2013 Mellanox Technologies 30

Major enhancement with a full MPI-3.0 implementation

The following features require Fortran 2003 + TR 29113
• Subarrays may be passed to nonblocking routines 28

- This feature is available if the LOGICAL compile-time constant

MPI_SUBARRAYS_SUPPORTED == .TRUE.

• Correct handling of buffers passed to nonblocking routines37

- if the application has declared the buffer as ASYNCHRONOUS within the

scope from which the nonblocking MPI routine and its MPI_Wait/Test is called,

- and the LOGICAL compile-time constant

MPI_ASYNC_PROTECTS_NONBLOCKING == .TRUE.

• These features must be available in MPI-3.0 if the target compiler is

Fortran 2003+TR 29113 compliant.

- For the mpi module and mpif.h, it is a question of the quality of the MPI library.

new

new

© 2013 Mellanox Technologies 31

Status of reference implementation

• An initial implementation of the MPI 3.0 Fortran bindings are available in Open MPI

• A full implementation will not be available until compilers implement new Fortran syntax added specifically to

support MPI

- need ASYNCHRONOUS attribute for nonblocking routines

- need TYPE(*), DIMENSION(..) syntax to support subarrays

 e.g. MPI_Irecv(Array(3:13:2), ...)

© 2013 Mellanox Technologies 32 © MELLANOX TECHNOLOGIES 32

Enhanced Datatype Support

© 2013 Mellanox Technologies 33

Datatype Chapter

 Full support for MPI_Aint, MPI_Offset and MPI_Count. These types are now allowed in reduction

operations (ticket #187).

 Support for large counts. New versions of MPI_Get_elements, MPI_Get_count, MPI_Set_elements,

MPI_Type_size that take an MPI_Count type instead of an int for the count parameter (postfixed by

_X) (ticket #265).

 Full support for C++ types in both Fortran and C)(ticket #340).

 New datatype creating function MPI_Type_create_hindexed_block similar to

MPI_Type_create_indexed_block introduced in 2.2 (ticket #280).

© 2013 Mellanox Technologies 34 © MELLANOX TECHNOLOGIES 34

Large Counts

© 2013 Mellanox Technologies 35

Large Counts

 MPI-2.2

• All counts are int / INTEGER

• Producing longer messages through derived datatypes may cause problems

 MPI-3.0

• New type to store long counts:

- MPI_Count / INTEGER(KIND=MPI_COUNT_KIND)
• Additional routines to handle “long” derived datatypes:

- MPI_Type_size_x, MPI_Type_get_extent_x, MPI_Type_get_true_extent_x
• “long” count information within a status:

- MPI_Get_elements_x, MPI_Status_set_elements_x
• Communication routines are not changed !!!

• Well-defined overflow-behavior in existing MPI-2.2 query routines:

- count in MPI_GET_COUNT, MPI_GET_ELEMENTS, and

size in MPI_PACK_SIZE and MPI_TYPE_SIZE

is set to MPI_UNDEFINED when that argument would overflow.

© 2013 Mellanox Technologies 36 © MELLANOX TECHNOLOGIES 36

Matched Probe

© 2013 Mellanox Technologies 37

Thread-safe probe: MPI_(I)MPROBE & MPI_(I)MRECV 11

 MPI_PROBE & MPI_RECV together are not thread-safe:

• Within one MPI process, thread A may call MPI_PROBE

• Another tread B may steal the probed message

• Thread A calls MPI_RECV, but may not receive the probed message

 New thread-safe interface:

• MPI_IMPROBE(source, tag, comm, flag, message, status) or

• MPI_MPROBE(source, tag, comm, message, status)

 together with

• MPI_MRECV(buf, count, datatype, message, status) or

• MPI_IMRECV(buf, count, datatype, message, request)

Message handle,
e.g., stored in a thread-local

variable

© 2013 Mellanox Technologies 38 © MELLANOX TECHNOLOGIES 38

Topology Aware Communicator Creation

© 2013 Mellanox Technologies 39

Topology-aware communicator creation

 Allows you to create a communicator whose processes can create a shared memory region

• MPI_Comm_split_type(comm, comm_type, key, info, split_comm)

• More generally: it splits a communicator into subcommunicators

split_comm of a certain type:

- MPI_COMM_TYPE_SHARED: shared memory capability

- Other implementation specific types are possible: rack, switch, etc.

© 2013 Mellanox Technologies 40 © MELLANOX TECHNOLOGIES 40

Removed Functionality

© 2013 Mellanox Technologies 41

Removed Functionality

 Current state
• Deprecated in MPI 2.2

• Technical aspects

• Supports MPI namespace

• Support for exception handling

• Not what most C++ programmers expect

• Special C++ types are supported through
additional MPI predefined datatypes

• MPI_CXX_BOOL bool

• MPI_CXX_FLOAT_COMPLEX std::complex<float>

• MPI_CXX_DOUBLE_COMPLEX std::complex<double>

• MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

 Removed MPI-1.1 functionality (deprecated since MPI-2.0):

• Routines: MPI_ADDRESS, MPI_ERRHANDLER_CREATE / GET / SET, MPI_TYPE_EXTENT / HINDEXED /
HVECTOR / STRUCT / LB / UB

• Datatypes: MPI_LB / UB

• Constants MPI_COMBINER_ HINDEXED/HVECTOR/STRUCT _INTEGER

• Removing deprecated functions from the examples and definition of MPI_TYPE_GET_EXTENT

© 2013 Mellanox Technologies 42 © MELLANOX TECHNOLOGIES 42

Deprecated Functionality

© 2013 Mellanox Technologies 43 © MELLANOX TECHNOLOGIES 43

Did Not Make It In

© 2013 Mellanox Technologies 44

Major Functionality

 Immediate versions of nonblocking file I/O operations

 Fault Tolerance

 Helper Threads

 Clarification on multiple MPI processes in same address space

© 2013 Mellanox Technologies 45 © MELLANOX TECHNOLOGIES 45

Expected Implementation Timelines
What next ?

© 2013 Mellanox Technologies 46

Status of MPI-3 Implementations

MPICH MVAPICH Cray TH-MPI IBM
Open

MPI
Fujitsu SGI-MPT

NB collectives ✔ ✔ ✔ ✔ Spring 2014 ✔
Open MPI

+ rel Delta ✔

Neighborhood

collectives
✔ ✔ ✔ ✔ Spring 2014

Open MPI

+ rel Delta

Spring

2014

RMA ✔ ✔ ✔ ✔ Spring 2014
Open MPI +

rel Delta Fall 2013

MPI shared

memory
✔ ✔ ✔ ✔ Spring 2014 Fall 2013

Tools Interface SC ‘13 Spring 2014 ✔ Fall 2013

Non-collective

comm. create
✔ ✔ ✔ ✔ Spring 2014 ✔

F08 Bindings

(Needs fixes to

MPI-3)

(Spring

2014)

(Sep.

2014)

(Spring

2014)
(Spring 2014) (✔)

(Spring

2014)

New Datatypes ✔ ✔ ✔ ✔ Spring 2014 ✔ ✔

Large Counts ✔ ✔ ✔ ✔ Spring 2014 ✔
Spring

2014

Matched Probe ✔ ✔ ✔ ✔ Spring 2014 ✔ ✔

© 2013 Mellanox Technologies 47

Current MPI-Forum Activities – MPI next (3.1/4.0/?)

 Fault tolerance

 Better threading support

 Cleanup from MPI-3: As implementations are maturing, small (and not so small) items are

showing up that need addressing in the standard

© 2013 Mellanox Technologies 48

Thank You

