
Programming	 with	 OmpSs	 -‐	 Single	 node	 hands-‐on	 	

Hardware Configuration and Login Information
-‐-‐	 MareNostrum	 III	 -‐-‐

-‐	 Peak	 Performance	 of	 1,1	 Petaflops
-‐	 100.8	 TB	 of	 main	 memory
-‐	 Homogeneous	 Nodes

-‐	 3,056	 compute	 nodes
-‐	 2x	 Intel	 SandyBridge-‐EP	 E5-‐
2670/1600	 20M	 8-‐core	 at	 2.6	 GHz
-‐	 8x4GB	 DDR3-‐1600	 DIMMS	 (2GB/core)

-‐	 Heterogeneous	 Nodes
-‐	 42	 heterogeneous	 compute	 nodes
-‐	 2x	 Intel	 SandyBridge-‐EP	 E5	
-‐2670/1600	 20M	 8-‐core	 at	 2.6	 GHz
-‐	 2x	 Xeon	 Phi	 5110	 P
-‐	 8x8GB	 DDR3-‐1600	 DIMMS	 (4GB/core)

-‐	 2	 PB	 of	 disk	 storage
-‐	 Interconnection	 networks:

-‐	 Infiniband	 FDR10
-‐	 Gigabit	 Ethernet

- Operating	 System:	 Linux-‐SuSe	 Distribution
	

Change	 password	 node:
-‐	 dl01.bsc.es

Login	 nodes:
-‐	 mn3.bsc.es

username:	 nct010[01-‐30]
passwd:	 ******

(*)	 Last	 five	 digits	 and	 password	 will	
be	 provided	 during	 the	 hands-‐on	
session.
	

	

Getting the exercises (and configuring OmpSs)

Connect to a MareNostrum Login Node (see information above about available login nodes)
using your username and your password. It is important to enable X11 forwarding when
starting your ssh session due we will use visualization tools.

Copy the heat-ompss.tar.gz file from ~nct00002/OmpSs directory to your home and unpack
it (using tar). It will create a new directory called ompss-exercises-MN. Inside the directory you
will find a configure script file. Make sure you execute source on that file to configure your
environment in order to use OmpSs tools.

	
$	 ssh	 -‐X	 username@login-‐node	
login	 as:	 nct99999	
nct99999@login-‐node's	 password:	 ******	
Last	 login:	 Thu	 Jan	 01	 00:00:00	 1970	 from	 00.00.00.00	
nct99999@login-‐node:~>tar	 -‐xvf	 ~nct00002/heat-‐ompss.tar.gz	
nct99999@login-‐node:~>cd	 heat-‐ompss	
nct99999@login-‐node:~>source	 env.sh	
	

All OmpSs exercises come with a makefile (Makefile). Some of them are also configured to
compile different versions for each program: sequential version, OmpSs version, and
instrumented version.

Each exercise may have several job scripts. For example, a script with suffix “-i” will
generate a tracefile and a script with suffix “-g” will generate the task dependence graph. Before
submitting any job, make sure all environment variables have the values you expect to. The job

would be submitted using: “bsub < <job_script>”. While the jobs are queued you can check
their status using the command “bjobs” (it may take a while to start executing). Once a job has
been executed you will get two files. One for console standard output (with .out extension) and
other for console standard error (with .err extension).

	

Heat diffusion

During the hands-on we will do several exercises of increasing difficulty with the heat
diffusion example. A plain sequential code and an initial OmpSs code are provided. A Makefile
is also provided that enables to build the sequential version, the OmpSs version and the
instrumented OmpSs version. In the text, actions required from your side are indicated with
bullets (■).

(a) Compiling and Executing OmpSs Programs

The first solver of the heat diffusion example has been parallelized with OmpSs (Jacobi).
The strategy used has been to generate inline tasks for the two inner loops of the computation
(the ones that process a block of the matrix).

§ Analyse the proposed OmpSs parallelization by opening the heat-ompss.c and
solver-ompss.c files.

§ Compile the sequential, OmpSs and instrumented OmpSs versions using the
provided Makefile.

§ Execute and generate the task-dependence graph by using the run-ompss-g_mn.sh
script. Use the queues (“ > bsub < run-ompss-g_mn.sh”). Visualize and observe the
graph.

§ Execute and generate the Paraver tracefile by using the run-ompss-i_mn.sh
(submiting the script to the queuing system). Visualize the tracefile. Analyze the
execution at least with the following configuration files: “task.cfg”,
“task_number.cfg”, “nb_tasks_in_execution.cfg”

§ Execute a performance run using the run_ompss_mn.sh (using the queueing
system). This will take a while, so launch the script and continue with next exercise.
Afterward, analyse the results and draw execution and speed-up charts.

Parallelizing	 the	 Red-‐Black	 solver	 	

Propose an OmpSs parallelization for the Red-Black solver (you can follow the Jacobi
strategy or think of another if you consider more appropriate).

§ Write the solution.
§ Compile and check that the solution is running correctly. To run the redblack

solver, you should modify the “test*.dat” files to select this algorithm.

§ Generate the graph by modifying the testgrind3.dat to select the redblack
algorithm.

§ Generate the tracefile by modifying the testgrind2.dat to select the redbalck
algorithm.

§ Compare the Jacobi and Red-Black solutions, both the graph and different
Paraver views.

§ Execute a performance run. Again, generate the execution and speed-up charts
and compare with the Jacobi solution.

§ What differences do you observe?

Parallelizing	 the	 Gauss-‐Seidel	 solver	

Propose an OmpSs parallelization for the Gauss-Seidel solver.

§ Write the solution.
§ Compile and check that the solution is running correctly. To run the redblack

solver, you should modify the “test*.dat” files to select this algorithm.

§ Generate the graph by modifying the testgrind3.dat to select the redblack
algorithm.

§ Generate the tracefile by modifying the testgrind2.dat to select the redbalck
algorithm.

§ Compare the Gauss-Seidel, Jacobi and Red-Black solutions, both the graph and
different Paraver views.

§ Execute a performance run. Again, generate the execution and speed-up charts
and compare with the previous solutions.

§ What differences do you observe?

§ Can you improve your solution (i.e., by overlapping the execution of different
iterations?)

	

