
Programming	
 with	
 OmpSs	
 -­‐	
 Single	
 node	
 hands-­‐on	
 	

Hardware Configuration and Login Information
-­‐-­‐	
 MareNostrum	
 III	
 -­‐-­‐

-­‐	
 Peak	
 Performance	
 of	
 1,1	
 Petaflops
-­‐	
 100.8	
 TB	
 of	
 main	
 memory
-­‐	
 Homogeneous	
 Nodes

-­‐	
 3,056	
 compute	
 nodes
-­‐	
 2x	
 Intel	
 SandyBridge-­‐EP	
 E5-­‐
2670/1600	
 20M	
 8-­‐core	
 at	
 2.6	
 GHz
-­‐	
 8x4GB	
 DDR3-­‐1600	
 DIMMS	
 (2GB/core)

-­‐	
 Heterogeneous	
 Nodes
-­‐	
 42	
 heterogeneous	
 compute	
 nodes
-­‐	
 2x	
 Intel	
 SandyBridge-­‐EP	
 E5	

-­‐2670/1600	
 20M	
 8-­‐core	
 at	
 2.6	
 GHz
-­‐	
 2x	
 Xeon	
 Phi	
 5110	
 P
-­‐	
 8x8GB	
 DDR3-­‐1600	
 DIMMS	
 (4GB/core)

-­‐	
 2	
 PB	
 of	
 disk	
 storage
-­‐	
 Interconnection	
 networks:

-­‐	
 Infiniband	
 FDR10
-­‐	
 Gigabit	
 Ethernet

- Operating	
 System:	
 Linux-­‐SuSe	
 Distribution
	

Change	
 password	
 node:
-­‐	
 dl01.bsc.es

Login	
 nodes:
-­‐	
 mn3.bsc.es

username:	
 nct010[01-­‐30]
passwd:	

(*)	
 Last	
 five	
 digits	
 and	
 password	
 will	

be	
 provided	
 during	
 the	
 hands-­‐on	

session.
	

	

Getting the exercises (and configuring OmpSs)

Connect to a MareNostrum Login Node (see information above about available login nodes)
using your username and your password. It is important to enable X11 forwarding when
starting your ssh session due we will use visualization tools.

Copy the heat-ompss.tar.gz file from ~nct00002/OmpSs directory to your home and unpack
it (using tar). It will create a new directory called ompss-exercises-MN. Inside the directory you
will find a configure script file. Make sure you execute source on that file to configure your
environment in order to use OmpSs tools.

	

$	
 ssh	
 -­‐X	
 username@login-­‐node	

login	
 as:	
 nct99999	

nct99999@login-­‐node's	
 password:	

Last	
 login:	
 Thu	
 Jan	
 01	
 00:00:00	
 1970	
 from	
 00.00.00.00	

nct99999@login-­‐node:~>tar	
 -­‐xvf	
 ~nct00002/heat-­‐ompss.tar.gz	

nct99999@login-­‐node:~>cd	
 heat-­‐ompss	

nct99999@login-­‐node:~>source	
 env.sh	

	

All OmpSs exercises come with a makefile (Makefile). Some of them are also configured to
compile different versions for each program: sequential version, OmpSs version, and
instrumented version.

Each exercise may have several job scripts. For example, a script with suffix “-i” will
generate a tracefile and a script with suffix “-g” will generate the task dependence graph. Before
submitting any job, make sure all environment variables have the values you expect to. The job

would be submitted using: “bsub < <job_script>”. While the jobs are queued you can check
their status using the command “bjobs” (it may take a while to start executing). Once a job has
been executed you will get two files. One for console standard output (with .out extension) and
other for console standard error (with .err extension).

	

Heat diffusion

During the hands-on we will do several exercises of increasing difficulty with the heat
diffusion example. A plain sequential code and an initial OmpSs code are provided. A Makefile
is also provided that enables to build the sequential version, the OmpSs version and the
instrumented OmpSs version. In the text, actions required from your side are indicated with
bullets (■).

(a) Compiling and Executing OmpSs Programs

The first solver of the heat diffusion example has been parallelized with OmpSs (Jacobi).
The strategy used has been to generate inline tasks for the two inner loops of the computation
(the ones that process a block of the matrix).

§ Analyse the proposed OmpSs parallelization by opening the heat-ompss.c and
solver-ompss.c files.

§ Compile the sequential, OmpSs and instrumented OmpSs versions using the
provided Makefile.

§ Execute and generate the task-dependence graph by using the run-ompss-g_mn.sh
script. Use the queues (“ > bsub < run-ompss-g_mn.sh”). Visualize and observe the
graph.

§ Execute and generate the Paraver tracefile by using the run-ompss-i_mn.sh
(submiting the script to the queuing system). Visualize the tracefile. Analyze the
execution at least with the following configuration files: “task.cfg”,
“task_number.cfg”, “nb_tasks_in_execution.cfg”

§ Execute a performance run using the run_ompss_mn.sh (using the queueing
system). This will take a while, so launch the script and continue with next exercise.
Afterward, analyse the results and draw execution and speed-up charts.

Parallelizing	
 the	
 Red-­‐Black	
 solver	
 	

Propose an OmpSs parallelization for the Red-Black solver (you can follow the Jacobi
strategy or think of another if you consider more appropriate).

§ Write the solution.
§ Compile and check that the solution is running correctly. To run the redblack

solver, you should modify the “test*.dat” files to select this algorithm.

§ Generate the graph by modifying the testgrind3.dat to select the redblack
algorithm.

§ Generate the tracefile by modifying the testgrind2.dat to select the redbalck
algorithm.

§ Compare the Jacobi and Red-Black solutions, both the graph and different
Paraver views.

§ Execute a performance run. Again, generate the execution and speed-up charts
and compare with the Jacobi solution.

§ What differences do you observe?

Parallelizing	
 the	
 Gauss-­‐Seidel	
 solver	

Propose an OmpSs parallelization for the Gauss-Seidel solver.

§ Write the solution.
§ Compile and check that the solution is running correctly. To run the redblack

solver, you should modify the “test*.dat” files to select this algorithm.

§ Generate the graph by modifying the testgrind3.dat to select the redblack
algorithm.

§ Generate the tracefile by modifying the testgrind2.dat to select the redbalck
algorithm.

§ Compare the Gauss-Seidel, Jacobi and Red-Black solutions, both the graph and
different Paraver views.

§ Execute a performance run. Again, generate the execution and speed-up charts
and compare with the previous solutions.

§ What differences do you observe?

§ Can you improve your solution (i.e., by overlapping the execution of different
iterations?)

	

