
www.bsc.es

PUMPS 2013, 12 July 2013

Rosa M Badia, Xavier Martorell

Tutorial OmpSs: Development 
methodology and infrastructure

PUMPS 2013 tutorial
Hybrid and Heterogeneous Parallel Programming with

MPI/OmpSs for Exascale Syste



Tutorial OmpSs

Agenda 10:00 – 11:00 Tasking in OpenMP 3.0 and 4.0 60 min

11:00 – 11:15 Coffee break 15 min

11:15 – 12:15 Introduction to OmpSs programming model
• Introduction to StarSs
• OmpSs syntax 
• Simple examples
• Development methodology and 

infrastructure

60 min

12:15– 12:45 Practical: heat equation example and divide-
and-conquer (part I)

30 min

12:45 – 14:00 Lunch 75 min

14:00 – 15:00 Practical: heat equation example and divide-
and-conquer (part I)

90 min

15:00 – 15:30 Programming using a hybrid MPI/OmpSs
approach

15 min

15:30 – 17:00 Practical: heat equation example and matrix-
multiply

105 min



OmpSs compiler and runtime



Mercurium Compiler 

Recognizes constructs and transforms them to calls to the runtime
Manages code restructuring for different target 
devices
– Device-specific handlers
– May generate code in a 

separate file 
– Invokes different back-end 

compilers 
 nvcc for NVIDIA C/C++/Fortran



The NANOS++ Runtime

Nanos++ 
– Common execution runtime (C, C++ and Fortran)
– Target specific features
– Task creation, dependency management, resilience, …
– Task scheduling (BF, Cilk, Priority, Socket, …)
– Data management: Unified directory/cache architecture

• Transparently manages separate address spaces (host, device, cluster)…
• … and data transfer between them



Runtime structure behaviour: task handling

Task generation
Data dependence analysis
Task scheduling



Runtime structure behaviour: coherence support

Different address spaces managed with:
– A hierarchical directory 
– A software cache per each:

• Cluster node
• GPU

Data transfers between different memory spaces only when needed
– Write-through
– Write-back



Runtime structure behaviour: GPUs
Automatic handling of  Multi-GPU execution
Transparent data-management on GPU side (allocation, transfers, ...) and
synchronization
One manager thread in the host per GPU. Responsible for:
– Transferring data from/to GPUs
– Executing GPU tasks 
– Synchronization

Overlap of 
computation and
communication
Data pre-fetch



Runtime structure behaviour: clusters
One runtime instance per node
– One master image
– N-1 slave images

Low level communication through active messages 
Tasks generated by master 
– Tasks executed by worker threads in the master
– Tasks delegated to slave nodes through the communication thread

Remote task execution:
– Data transfer 

(if necessary) 
– Overlap of computation 

with communication
– Task execution

• Local scheduler



Runtime structure behavior: clusters of GPUs

– Composes previous approaches
– Supports for heterogeneity and hierarchy:

• Application with homogeneous tasks: SMP or GPU
• Applications with heterogeneous tasks: SMP and GPU
• Applications with hierarchical and heterogeneous tasks:

– I.e., coarser grain SMP tasks
– Internally generating GPU tasks



Compiling

Compiling
mcc --ompss -c bin.c

Linking
mcc --ompss -o bin bin.o

where frontend can be:

mcc C
mcxx C++
mnvcc CUDA & C
mnvcxx CUDA & C++
mfc Fortran 



Compiling

Compatibility flags:
– -I, -g, -L, -l, -E, -D, -W

Other compilation flags:

-k Keep intermediate files
--debug Use Nanos++ debug version
--instrumentation Use Nanos++ instrumentation version 
--version Show Mercurium  version number
--verbose Enable Mercurium verbose output
--Wp,flags Pass flags to preprocessor (comma separated)
--Wn,flags Pass flags to native compiler (comma separated)
--Wl,flags Pass flags to linker (comma separated)
--help To see many more options :-)



Executing

No LD_LIBRARY_PATH or LD_PRELOAD needed
./bin

Adjust number of threads with OMP_NUM_THREADS
OMP_NUM_THREADS=4 ./bin



Nanos++ options

 Other options can be passed to the Nanos++ runtime via 
NX_ARGS

NX_ARGS=”options” ./bin

--schedule=name Use name task scheduler
--throttle=name Use name throttle-policy
--throttle-limit=limit Limit of the throttle-policy (exact meaning depends on 

the policy)
--instrumentation=name Use name instrumentation module
--disable-yield Nanos++ won't yield threads when idle
--spins=number Number of  spin loops when idle
--disable-binding Nanos++ won't bind threads to CPUs
--binding-start=cpu First CPU where a thread will be bound
--binding-stride=number Stride between bound CPUs



Nanox helper

Nanos++ utility to
– list available modules:

nanox --list-modules
– list available options:

nanox --help



Tracing

Compile and link with --instrument
mcc --ompss --instrument -c bin.c
mcc -o bin --ompss --instrument bin.o

When executing specify which instrumentation module to use:
NX_INSTRUMENTATION=extrae ./bin

Will generate trace files in executing directory
– 3 files: prv, pcf, rows
– Use paraver to analyze



Reporting problems

Compiler problems
– http://pm.bsc.es/projects/mcxx/newticket

Runtime problems
– http://pm.bsc.es/projects/nanox/newticket

Support mail
– pm-tools@bsc.es

Please include snapshot of the problem



Programming methodology
Correct sequential program
Finding tasks with Tareador
Debugging with Ayudame/Temanejo
Incremental taskification
– Test every individual task with forced sequential in-order execution

•  1 thread, scheduler = FIFO, throtle=1
Single thread out-of-order execution
Increment number of threads
– Use taskwaits to force certain levels of serialization



Debugging: AYUDAME/TEMANEJO

Leverage probe hooks provided by compiler and runtime

Task based debugging:
– Display graph
– Control execution environment (#threads,…)
– Breakpoints at tasks

Interface to instruction level debugger (gdb)

By HLRS



Visualizing Paraver tracefiles

Set of Paraver configuration files ready for OmpSs. Organized in 
directories
– Tasks: related to application tasks
– Runtime, nanox-configs: related to OmpSs runtime internals
– Graph_and_scheduling: related to task-graph and task scheduling 
– DataMgmgt: related to data management
– CUDA: specific to GPU



Tasks’ profile

2dp_tasks.cfg
Tasks’ profile 

threads

tasks’ types

gradient color, 
indicates given estadístic:
i.e., number of tasks instances 

control window:
timeline where each 
color represent the 
task been executed
by each thread

light blue: not executing
tasks

different colours
represent different 
task type



Tasks duration histogram

3dh_duration_task.cfg

threads

time intervals

gradient color, 
indicates given estadístic:
i.e., number of tasks instances 



Tasks duration histogram

3dh_duration_task.cfg

control window: 
task duration



Tasks duration histogram
3dh_duration_task.cfg

3D window: 
task type



Tasks duration histogram
3dh_duration_task.cfg

3D window: 
task type

chooser: 
task type



Threads state profile
2dp_threads_state.cfg

threads

runtime state

control window:
timeline where each 
color represent the 
runtime state of each
thread 



www.bsc.es

Thank you!
For further information please contact

rosa.m.badia@bsc.es

27


