
www.bsc.es

PATC Parallel Programing Workshop
Oct 14-18 2013

Judit Gimenez
BSC

Understanding applications
performance with Paraver

2

Our Tools

! Since 1991

! Based on traces

! Open Source
–  http://www.bsc.es/paraver

! Core tools:
–  Paraver (paramedir) – offline trace analysis
–  Dimemas – message passing simulator
–  Extrae – instrumentation

! Focus
–  Detail, flexibility, intelligence

3

Multispectral imaging

!   Different looks at one reality
–  Different spectral bands (light sources and filters)

!   Highlight different aspects
–  Can combine into false colored but highly informative images

4

Spreadsheets and browsers

!   Display, manipulate data
–  Dynamic content
–  User defined operations

5

A “different” view on performance analysis and tools

!   Behavioral structure vs. syntactic structure
–  Algorithmic and performance
–  In space and time

!   Variability

–  Multimodal distributions
–  Variability + synchronization à critical non linear effects

!   Flexibility to let analyst navigate the captured data and gain
as much insight as possible from as few application runs as
possible.

“That what is simple is rarely understood”
 my iPads Shangai cookies

www.bsc.es

Paraver

PATC Parallel Programing Workshop
Oct 14-18 2013

7

What is Paraver

!   A browser …

!   …to manipulate (visualize, filter, cut, combine, …) ….

!   … sequences of time-stamped events …

!   … with a multispectral philosophy …

!   … and a mathematical foundation …

!   … that happens to be mainly used for performance analysis

8

Trace

!   Sequence of time stamped records
–  Punctual events

•  Something happened: when and where (object/entity: … thread)
•  One record per specific information (encoded as a type and a value)

–  About the event
–  About the interval from the previous event till this one (i.e. hardware counts,…)

–  Relations between objects (… communications)
•  Source and sink
•  Attributes (… size, tag)

–  Separate numeric (.prv) and symbolic (.pcf) files

!   Only information derived from captured events and data can be
reported.
–  Trivial but … often forgotten

9

Extrae

!   Major BSC instrumentation package

!   When / where
–  Parallel programming model runtime

•  MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, MIC…
•  API entry/exit, OpenMP outlined routines

–  Selected user functions
–  Periodic samples
–  User events

!   Additional information
–  Counters

•  PAPI
•  Network counters
•  OS counters

–  Link to source code
•  Callstack

10

How does Extrae intercept your app?

!   LD_PRELOAD
–  Works on production binaries
–  Specific library for each combination of runtimes
–  Does not require knowledge on the application

!   Dynamic instrumentation
–  Works on production binaries
–  Just specify functions to be instrumented.

!   Other possibilities
–  Link instrumentation library statically (i.e., PMPI @ BG/Q, …)
–  OmpSs (instrumentation calls injected by compiler + linked to library)

Based on DynInst
U.Wisconsin/U.Maryland

11

How to use Extrae?

!   Adapt job submission script
–  Specify LD_PRELOAD library and xml instrumentation control file

!   Specify the data to be captured in the .xml instrumentation
control file

!   Run and get the trace …

Extrae 2.3.4 User's Guide available in
 http://www.bsc.es/computer-sciences/performance-tools/documentation

Default control files and further examples within installation in

 $EXTRAE_HOME/share/example

12

Paraver – Performance data browser

 Timelines

Raw data

2/3D tables
(Statistics)

Goal = Flexibility
No semantics

Programmable

Comparative analyses
Multiple traces
Synchronize scales

+ trace manipulation
Trace visualization/analysis

13

Paraver mathematical foundation

!   Every behavioral aspect/metric described as a function of time
–  Possibly aggregated along

•  the process model dimension (thread, process, application, workload)
•  The resource model dimension (core, node, system)

–  Language to describe how to compute such functions of time (GUI)
•  Basic operators (from) trace records
•  Ways of combining them

!   Those functions of time can be rendered into a 2D image

–  Timeline

!   Statistics can be computed for each possible value or range of
values of that function of time
–  Tables: profiles and histograms

14

Paraver mathematical foundation

[) Ν∈∈= + itttSts iii ,,,)(1

Function of time Series of values

Filter

Semantic

Display

Trace

Sub-Trace / subset of records

(S1,t1), (S2,t2), (S3,t3),…

15

Timelines

!   Each window displays one view
–  Piecewise constant function of time

!   Types of functions
–  Categorical

•  State, user function, outlined routine

–  Logical
•  In specific user function, In MPI call, In long MPI call

–  Numerical
•  IPC, L2 miss ratio, Duration of MPI call, duration of computation

burst

[] <⊂∈ nNSi ,n0,

[)1,,)(+∈= iii ttiSts

RSi ∈

{ }1 ,0 ∈iS

16

Timelines

!   Representation
–  Function of time

–  Colour encoding

–  Not null gradient
•  Black for zero value
•  Light green → Dark blue

!   Non linear rendering to address scalability

J. Labarta, et al.: “Scalability of tracing and visualization tools”, PARCO 2005

17

Basic functions of time

See slides at end of presentation for details

18

Tables: Profiles, histograms, correlations

!   From timelines to tables
MPI calls profile

Useful Duration

Histogram Useful Duration

MPI calls

19

Analyzing variability through histograms and timelines

Useful Duration

Instructions

IPC

L2 miss ratio

20

Analyzing variability through histograms and timelines

!   By the way: six months later ….

Useful Duration

Instructions

IPC

L2 miss ratio

21

3D Tables

!   An additional control dimension
–  One table (plane) per value (or range) of 3D window
–  i.e. histogram of duration of each function

Duration

User functions

22

From tables to timelines

!   Where in the timeline do the values in certain table
columns appear?

–  ie. want to see the time distribution of a given routine?

Only showing when a

given value happens

23

Variability … is everywhere

!   CESM: 16 processes, 2 simulated days

!   Histogram useful computation duration
shows high variability

!   How is it distributed?

!   Dynamic imbalance

–  In space and time
–  Day and night.
–  Season ? J

24

Other mechanisms integrated in the GUI

!   Trace manipulation
–  Cut
–  Filter

!   Performance analytics

–  Clustering
–  Folding
–  Tracking

!   Executing external commands and tools
–  BSC Tools
–  Scripts
–  External tools

25

!   Data handling/summarization capability
–  Filtering

•  Subset of records in original trace
•  By duration, type, value,…
•  Filtered trace IS a paraver trace and can

be analysed with the same cfgs (as long
as needed data kept)

–  Cutting
•  All records in a given time interval
•  Only some processes

–  Software counters
•  Summarized values computed from those

in the original trace emitted as new even
types

•  #MPI calls, total hardware count,…

570 s
2.2 GB

MPI, HWC

WRF-NMM
Peninsula 4km
128 procs

570 s
5 MB

4.6 s
36.5 MB

Trace manipulation

See slides at end of presentation for details

26

External commands and tools

!   Execute external commands …
–  Predefined: Dimemas, Stats,…
–  User specified binaries or scripts

!   … specifying arguments
–  Trace
–  Command specific arguments

! Paramedir
–  Non graphical version of Paraver
–  Reads trace, applies standard cfgs, writes ASCII output (table,…)

!   Scripts can use paramedir, Dimemas, clustering … in
parametric sweeps, search/optimization loops,…

27

Executing external commands

!   Example: basic_analysis.py
==
Analysis of XXXXX.prv
==
Timing:
 Elapsed duration = 3.887 s
 Ideal time = 3.223 s
 Compute time = 2.637952 s
 MPI time = 1.24930663 s

Parallel Efficiency:
 Total Efficiency = 0.679
 Load Balance = 0.950
 Micro Load Balance = 0.859
 Transfer = 0.829
 Bweff = 0.814
 Leff = 1.000

Load balance:
 Time Load Balance = 0.950
 Instructions Load Balance = 0.990
 Cycles load balance = 0.950
 IPC Load Balance = 0.960

Computational analysis:
 Total useful instructions = 5.399636e+11
 Average useful instructions per process = 8.436931e+09
 Instructions based microload balance/sync = 0.924

sequential performance:
 Average MIPS = 3199
 Average IPC = 1.050

Basic communication statistics:
 Point to point:
 Average number of calls = 554.0
 Balance in number of calls = 1.0
 Average bytes per process = 728596480.0
 Balance in bytes = 0.990
 Collectives:
 Num collective calls = 6.0
 Average bytes per call = 6.670
 Max bytes per call = 8.000
 Balance in bytes = 1.000

Inter - Intra node communication statistics:
 Bytes sent (MB):
 Locally = 22229.811
 Remotely = 24645.730
 Number of sends:
 Locally = 3520.000
 Remotely = 6592.000

64Proc – 8 MPI by node

www.bsc.es

Performance Analytics

PATC Parallel Programing Workshop
Oct 14-18 2013

29

Performance Analytics

!   Dominant practice
–  We focus a lot on capturing a lot of data
–  but we present either everything or first order statistics
–  and require new experiments without squeezing the potential information

from the previous one

!   Need for performance analytics

–  Leveraging techniques from data analytics, mining, signal processing, life
sciences,…

–  towards insight
–  And models

!   Some techniques worked on at BSC
–  Spectral analysis
–  Clustering
–  Folding
–  Simulation (Dimemas)

Spectral
analysis

31

Repetitive behavior

!   Applications tend to have Iterative behavior
–  Detailed analysis can be applied to a few such iterations

!   Metrics in Paraver are functions of time

–  Natural target for signal processing techniques to automatically detect
such iterative structure

–  Relevant functions of time at global application level
•  # processes in MPI, outside MPI, …
•  Sum of useful burst duration

–  Semantic: high when many processes are in the middle of very long
computation bursts

–  Does capture repetitive structure of application

32

Signal processing applied to performance analysis

!   Techniques
–  Mathematical

morphology
•  clean up perturbed

regions
–  Wavelet transform

•  identify coarse
regions

–  Spectral analysis
•  detailed periodic

pattern

!   Useful
–  Identify structure

(periodicity)
–  Reduce trace sizes
–  Increase precision of

profiles (report non
perturbed stats)

Flushing

Flushing
filtered

Wavelet
High

frequency

Σ Useful Duration

Autocorrelation

Spectral density

T

33

Signal processing applied to performance analysis

!   Hierarchical structure
identification

34

Scalability: online automatic interval selection

“ G. Llort et all, “Scalable tracing with dynamic levels of detail” ICPADS 2011

T0

Clustering
Analysis

MRNet
Front-
end

T1 Tn

…

Back-end threads

Aggregate
data

Broadcast
results

Structure detection

Detailed trace for only small interval

Clustering

36

Clustering: analysis of performance @ serial computation bursts

!   Identification of computation structure
–  CPU burst = region between consecutive runtime (MPI, OpenMP) calls

•  Described with performance hardware counters
•  Associated with call stack data

!   Scatter plot on some relevant metrics
–  Instructions: idea of computational complexity, computational load imbalance,…
–  IPC: Idea of absolute performance and performance imbalance
–  Automatically Identify clusters

37

Using Clustering to identify structure

IPC

Completed Instructions

J. Gonzalez et al, “Automatic Detection of Parallel Applications Computation” Phases. (IPDPS 2009)

38

Performance @ serial computation bursts

WRF 128 cores
GROMACS SPECFEM3D

Asynchronous SPMD

Balanced #instr
variability in IPC

MPMD structure

Different coupled
imbalance trends

SPMD
Repeated substructure

Coupled imbalance

Example PARSEK (DEEP)

duration vs. cluster

instr. vs. cluster

40

Structure quality?

!   How many clusters?
!   Which is better?

–  The two describe interesting structure
–  Typically SPMD would be a good first level of description for most apps

Using clustering

!   Clustering enables focusing the analysis and opens
many different uses
–  Analysis

•  Detection of application structure

–  Precise instantaneous metrics
•  correlation of sampled data to generate instantaneous metric

evolution

–  Dimemas:
•  Separate speed factors per cluster on predictive simulations

–  Track the evolution of application behaviour effects

–  …

Folding

43

!   … to get extreme detail with minimal overhead

!   Different roles
–  Instrumentation delimits regions
–  Sampling report progress within region

Mixing instrumentation and sampling …

Iteration #1 Iteration #2 Iteration #3

Synthetic Iteration

Harald Servat et al. “Unveiling Internal Evolution of Parallel Application Computation Phases” ICPP 2011

Harald Servat et al. “Detailed performance analysis using coarse grain sampling” PROPER@EUROPAR, 2009

l  Instructions evolution for routine copy_faces of NAS MPI BT.B

l  Red crosses represent the
folded samples and show
the completed instructions
from the start of the routine

l  Green line is the curve
fitting of the folded samples
and is used to reintroduce
the values into the tracefile

l  Blue line is the derivative
of the curve fitting over time
(counter rate)

Folding hardware counters

Folding à profiles of rates and ratios

!   Call-site sampling information is folded
–  Correlation between hwc and call-sites
–  GVIM/CUBE add-on to show performance within source code

•  Timeless but useful to point performance issues

What is a good performance?

!   Performance of a sequential region = 2000 MIPS

Is it good enough?

Is it easy to improve?

Instantaneous CPI stack

MRGENESIS

•  Trivial fix.(loop interchange)
•  Easy to locate?

•  Next step?

•  Availability of CPI stack models

for production processors?
•  Provided by

manufacturers?

48

PMEMD

•  Fix: Precompute transcendental
functions. Use stored value.

•  Serialization of computation
•  vs memory access

•  Interesting tradeoff

Instantaneous CPI stack

49

CG-POP

•  Between processes
•  3 Algorithmic phases
•  Impact of multicore sharing

Correlating counters

50

CG-POP

•  Within a process
•  3 algorithmic phases
•  Impact of multicore sharing

Correlating counters

www.bsc.es

Methodology

PATC Parallel Programing Workshop
Oct 14-18 2013

52

Performance analysis tools objective

Help validate hypotheses!

Help generate hypotheses!

Qualitatively!

Quantitatively!

53

Tools: mechanisms and navigation

!   The tools are instruments to address the questions

!   Need to know how to use
–  First learn to navigate with the tool

!   How to load configurations, zoom, fit coloring scales
!   How to read
!   How to generate timelines form tables

!   Second
!   Develop a basic understanding of the process of generation of the timelines and

histograms.

Paraver Tutorial:
Introduction to Analysis with Paraver (MPI)

54

First steps

!   Parallel efficiency – percentage of time invested on computation
–  Identify sources for “inefficiency”:

•  load balance
•  Communication /synchronization

!   Serial efficiency – how far from peak performance?
–  IPC

!   Scalability – code replication?
–  Total #instructions

!   Behavioral structure? Variability?

Paraver Tutorial:

Introduction to Paraver and Dimemas methodology

55

Presenting application performance

!   Factors modeling parallel efficiency
–  Load balance (LB)
–  Communication

•  Micro load balance (µLB) or
serialization

•  Transfer

!   Factors describing serial behavior

–  Computational complexity: #instr
–  Performance: IPC

!   Overall Scaling model

TransferLBLB **µη =

M. Casas et al, “Automatic analysis of speedup of MPI applications”. ICS 2008.

CommEff

P
instr instr

instr
#
0=η

IPCinstr ηηηη **=

0IPC
IPCP

IPC =η

56

Scaling model

)max(*
1

i

P

i
i

effP

eff
LB

∑
==

)max(ieffCommEff =

T
Teff i

i =iT
T

IPC
instr#

Directly from real execution metrics

CommEffLB*=η

LB

η

CommEff

57

Scaling model

! Dimemas simulation with ideal target
–  Latency =0; BW = ∞

µLB

TransferLBCommEff *µ= Migrating/local load imbalance
Serialization

idealT

T
TTransfer ideal=

ideal

i

T
TLB)max(

=µ

58

Scaling model

!   Fundamental behavior

!   Explains bottleneck …

!   …how they migrate …

!   … and combined effect

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250 300
Processors

Performance Factors

Parallel_Eff

LB

uLB

Transfer

 GROMACSv4.5

TransferLBLB **µη =

59

Modelling efficiency

0

5

10

15

20

0 50 100 150 200 250 300 350 400

speed up

Good scalability !!
Should we be happy?

CG-POP mpi2s1D - 180x120

TransferLBLB **µη =

0,5

0,6

0,7

0,8

0,9

1

1,1

0 100 200 300 400

Parallel eff

LB

uLB

transfer

0,4

0,6

0,8

1

1,2

1,4

1,6

0 100 200 300 400

Efficiency

Parallel eff

instr. eff

IPC eff

IPCinstr ηηηη **=

60

BSC Tools web site

! www.bsc.es/paraver
•  downloads

–  Sources / Binaries
–  Linux / windows / MAC

•  documentation
–  Training guides
–  Tutorial slides

!   Getting started
–  Start wxparaver
–  Help à tutorials and follow instructions
–  Follow training guides

•  Paraver introduction (MPI): Navigation and basic understanding of Paraver
operation

THANKS

www.bsc.es

Detailed material

PATC Parallel Programing Workshop
Oct 14-18 2013

Semantic Module

Basic functions of time

!   The filter module presents a subset of the trace to the semantic module. Each thread is described
by

–  A sequence of events , states and communications

–  For each event let be its time and its value

–  For each state let be its start time its stop time and its value

–  For each Communication let be its send time, its receive time, its size.

–  and identify the partner process and direction of the transfer

!   Semantic module builds

)(iR CT

[) Ν∈∈= + itttiSts ii ,,),()(1

NiEvi ∈,
)(iEvV)(iEvT

NiSti ∈,

)(is StT)(ie StT)(iStV

NiCi ∈,

)(iS CT)(iCSz
{ }recvsendCDir i ,)(∈

Function of time Series of values

th

)(iCPartner

Filter

Semantic

Display

Trace

65

Filter module

Show list of event
types

Communications that pass
through the filter

Events that pass through the
filter

66

Semantic module: Control

Semantic module

!   From Events to functions of time

–  Last event value

–  Next event value

–  Average Next Event Value

–  Interval btw. Events

)()(iEvViS =

)()(1+= iEvViS

)()(
)()(

1

1

ii

i

EvTEvT
EvViS
−

=
+

+

)()()(1 ii EvTEvTiS −= +

Semantic module

!   From communication records to functions of time

–  Send Bytes

–  Send Bandwidth

–  Msgs in transit

–  Recv. Bandwidth

–  Rec. Negative Msgs

–  Comm. Partner

–  Bytes btw. Events

))(())(())((|,
)()(

)(
)(recvCDirtCjTtCTj

CTCT
CSz

ts jRjS
j jSjR

j ==∧>∧<
−

=∑

))(())(())((|,)()(sendCjDirtCjTtCTjCSzts RjS
j

j ==∧>∧<=∑

))(())(())((|,
)()(

)(
)(sendCjDirtCjTtCTj

CTCT
CSz

ts RjS
j jSjR

j ==∧>∧<
−

=∑

))(())(())((|,)()(sendCjDirtCjTtCTjjsignts RjS
j

==∧>∧<=∑

))(())(())((|,)()(recvCjDirtCjTtCTjjsignts SjR
j

==∧>∧<=∑

))(())((|),()(tCjTtCTjCPartnerts RjSj >∧<=

[)))(),([)()(),()(|,)()(11 ++ ∈∨∈=∑ iijRiijS
j

j EvTEvTCTEvTEvTCTjCSziS

69

Composition

!   S’(t) = f(S(t)) S’ = f ° S

–  Sign

–  1-sign

–  Select range

–  Sign ° Is equal

–  Delta

–  Stacked value

[] 0:)(?,)()(' tSbatStS ∈=

)0:)(?)(()(' tSatSsigntS ==

ii SStS −= + 1)('

))(()(' tSsigntS =

))((1)(' tSsigntS −=

Semantic module

!   Derived windows

–  Point wise operation
•  S = α * Sa

 <op> β * Sb

•  <op> : + , -, *, /, …

Loads

Stores

Mem Ops

L2 Line Loads

L2 miss ratio

x100

Semantic module

!   Derived windows

–  Point wise operation
•  S = α * Sa

 <op> β * Sb

•  <op> : + , -, *, /, …

Interval between MPI events In MPI call

MPI call duration

72

Semantic module: Examples

!   Thread function: State as is

S: 3

Ev: 4,5
Ev: 2,1

S: 3 S: 5

Ev: 2,0
Ev: 4,9

0 1 4 5 Time

0 1 4 5 Time

3
5

3

•  Useful for

• Global thread activity: computing, idle, fork/join, waiting,…..

73

Semantic module: Examples

!   Filter: type == 2
–  Thread function: Last event value

S: 3

Ev: 4,5
Ev: 2,1

S: 3 S: 5

Ev: 2,0
Ev: 4,9

0 1 4 5 Time

•  Useful for

•  In parallel region

• Mutual exclusion

• Variable values: iteration,….

0 1 4 5 Time

0
1

undefined

74

Semantic module: Examples

!   Filter: type == 4
–  Thread function: Next event value

S: 3

Ev: 4,5
Ev: 2,1

S: 3 S: 5

Ev: 2,0
Ev: 4,9

0 1 4 5 Time

•  Useful for

• Hwc events (TLB, L1 misses,...) within interval

0 1 4 5 Time

undefined
9 5

75

Semantic module: Examples

!   Filter: type == 4
–  Thread function: Average next event value

S: 3

Ev: 4,5
Ev: 2,1

S: 3 S: 5

Ev: 2,0
Ev: 4,9

0 1 4 5 Time

•  Useful for

• Hwc events (TLB, L1 misses,...) per time unit within interval

0 1 4 5 Time

undefined 3 5

76

Semantic module: Examples

•  Filter: type == USR_FCT
 Thread function: Last event value
 Compose: Stacked value

Timeline

USR_FCT, idA USR_FCT, idB USR_FCT, 0 USR_FCT, idB USR_FCT, idC USR_FCT, 0 USR_FCT, 0 USR_FCT, 0

•  Useful for

• Routine

idA
idB

idA
idB

idC
idB

idA

77

Semantic module perspective

!   Process model
–  Thread, task, application,

workload

!   Resource model
–  CPU, node, system

fthread fthread fthread fthread fthread fthread fthread

Process view

Resource view

fprocess

fresource

78

Process model perspective

• Semantic value: S(t)‏

• S = fcomp2  fcomp1  fWorkload  fApplication  ftask  Sthread

• Semantic functions

• fcomp2, fcomp1: sign, mod, div, in range, select range
• fApplication, fWorkload : add, average, max, select
• ftask : add, average, max, select
• Sthread: in state, useful, given state,
•  last event value,
•  next event value,
•  average next event value
•  interval between events, …

fAppl

ftask

fthread fthread fthread fthread

ftask ftask

fthread fthread

fWorkload

fcomp1

fcomp2

79

Resource model perspective

• Sfresource = fcomp2  fcomp1  fSystem  fNode  fCPU  Sthread

• Semantic functions

• fSystem : add, average, max, select
• fNode : add, average, max, select
• fCPU : active thread, select
• Sthread: in state, useful, given state, next event value, thread_id

fNode

fCPU

fthread

fSystem

fthread

fthread

fthread

fthread

fthread

fCPU

fC
P
U

fNode

Analysis Module

81

Th
re

ad

MPI call, user function,…

Value/color is a statistic computed for the specific thread
when control window had the value corresponding to the column

Relevant statistics:

Time, %time, #bursts, Avg. burst time
Average of Data window

One columns per specific value of categorical Control window

How to read profiles

82

Th
re

ad

duration, instructions, BW, IPC, ...

Columns correspond to bins of values of a numeric Control window

Instructions

P
ro

ce
ss

or
s

How to read histograms

Value/color is a statistic computed for the specific thread
when control window had the value corresponding to the column

Relevant statistics:

Time, %time, #bursts, Avg. burst time
Average of Data window

NULL entry

Tables

!   Single flexible quantitative analysis mechanism
!   Let

–  cw1 and cw2 two views we will call control views
–  dw a view we will call data window

!   For each control window we define a set of bins

!   And the discriminator functions

!   The 3D analysis module computes a cube (or plane in the case of 2D) of
statistics

!   Where the statistic can represent the average value, the number of intervals,….

)(*)()(21
, ttt cw

k
cw
jkj δδδ =

[)cw
j

cw
j

cw
j rangerangebin 1, += cwcw

j
cw
j deltarangerange +=+1

))(*)((),,(,, ttSstatistickjthreadM kjth
dw
th δ=

)0:1?))((()(cw
j

cwcw
j bintSt ∈=δ

Identify regions with cw’s within the (j,k) bin

[)w
i

w
i

w
th

w
th tttiStS 1,),()(+∈=

For each window w

2D analysis module

∫=
end

start

t

t kjth
dw
th dtttSkjthIntegral)()(),,(,,δ

∫

∫
=

end

start

end

start

t

t kjth

t

t kjth
dw
th

dtt

dtttS
kjthAverage

)(

)()(
),,(

,,

,,

δ

δ

∫=
end

start

t

t kjth dttkjthTime)(),,(,,δ

startend

t

t kjth

tt

dtt
kjthTime

end

start

−
=
∫)(

),,(%
,,δ

∑∫

∫
=

j

t

t kjtn

t

t kjth

end

sctart

end

start

dtt

dtt
kjthoTimeNotZer

)(

)(
),,(%

,,

,,

δ

δ

[)endstartkjth
dw
th tttttSkjthMaximum ,)),()(max(),,(,, == δ

endiendstartistartikjth

i

i
dw
th ttiittiitiSkjthSumBurst end

start
<=>==∑ |)max(,|)min(),()(),,(

,,
δ

endiendstartistart

startend

ttiittii
iikjthNumBurst

<=>=

+−=

|)max(,|)min(
1),,(

Distributed Configurations

86

Distribution of cfg directories

!   CFG
–  General

•  including basic views (timelines) and analyses (2/3D profiles), including
views of the user functions and call-stack

–  Counters_PAPI
•  Hardware counter derived metrics. Grouped in directories for

–  Program: related to algorithmic/compilation (i.e. instructions,FP ops,…)
–  Architecture: related to execution on specific architectures (i.e. cache misses,

…)
–  Performance: metrics reporting rates per time (i.e. MFLops, MIPS, IPC,…)

–  MPI
•  Grouped in directories displaying views and analysis. Further separated

into point to point and collectives.
–  OpenMP

•  Grouped in directories displaying views and analysis

$PARAVER_HOME/cfgs

How to …

88

Main Paraver window
Select to browse in lower panel for traces or

cfgs
Select to browse characteristics

of active view or table

Available views and tables
Active view or table highlighted

Active trace

89

Load configuration files

Select directory

List of directories and configuration
files in current directory

Navigate through
directory tree

APPLIED TO THE CURRENT TRACEFILE

90

Navigation

Hide lower panel
(double click)

Shortcuts:

 Drag and move (D&M) – Zoom

 Control D&M – Zoom XY

 Shift D&M – Timing

Right click

91

How to generate table and change statistic
To generate table: click button and select region of
the window whose values will determine the columns
of the table

Range and bin width (delta) represented by each
column. By default is automatically selected, but can
be manually changed

Selection of
statistic to appear
in each cell

Cell coloring gradient
control
Window used to compute statistic
(only used by some statistics)

92

3D tables

!   One additional dimension
–  One plane per value of a 3D control window

!   Useful to categorize histograms
–  i.e. histogram of duration of specific user function

3D control window:
determines planes

Actual Plane on
display

93

Table information and control

max

min

Color encoding

Bin definition

Hide null columns

Color/not cells
Display whole table / cell text Transpose

Region analyzed

Activate 3D analysis

Change Data window

Create a new table

94

Table information and control

Generate ASCII file
with table data

Right click

Open Control window

Open Data window
Generate a timeline, derived form control window with

the range of values selected clicking in the table
(zoom mode only)‏

Open 3D window

Shortcuts (zoom mode only):
 Drag and move (D&M) – Zoom

 Control D&M – Zoom XY

Selected plane

95

From tables to timelines

!   Where in the timeline do the values in certain table
columns appear?

–  ie. want to see the time distribution of a given routine?

Only showing when is
routine white executing

Only showing when is
routine pink executing

Click button and
select column(s)

Will automatically
generate derived views

from the global view

96

From tables to timelines

!   Where in the timeline do the values in certain table
columns appear?
–  ie. want to see where the timeline happen computation bursts of

a given length?

3D histogram of duration of
routine foo

Click button and select
column(s)

Will automatically
generate

Only showing duration
of routine foo

Trace manipulation

98

Handling very large traces

! Paraver data handling utilities
–  If trying to load a very large trace, Paraver will ask if you want to filter it

!   Three steps:
–  Filter original trace discarding most of the records only keeping most

relevant information (typically computation bursts longer than a given
lower bound)

–  Analyze coarse grain structure of trace. Typically useful_duration.cfg
–  Cut original trace to obtain a fully detailed trace for the time interval

considered representative or of interest

Guided hands-on available in
 http://www.bsc.es/computer-sciences/performance-tools/documentation à Trace Preparation

99

Filtering very large traces

Select filtering
option

Discard events and
communications

Trace to which it will be applied

A trace with
basename.filter1.prv will be

generated

Keep only Running bursts
…. --- longer than

3000 ns

100

Cutting very large traces

!   Load a filtered trace and use the scissors tool

Browse to select file
from which the cut will

be obtained

Scissors tool

Click to select region

Select time interval by clicking left
and right limits in a window of the

filtered trace previously loaded

Recommended cuts within long
computation bursts

Select cutter

Default setups

Extrae

102

Adapt job submission script

#!/bin/bash

export NP=8
export INPUT=$1

cleo-submit -np $NP ./HydroC -i $INPUT

appl.job

103

Adapt job submission script

#!/bin/bash

export EXTRAE_HOME=/export/hopsa/BSCtools/tools/extrae-2.3
export EXTRAE_CONFIG_FILE=extrae/extrae.xml

export LD_PRELOAD=$EXTRAE_HOME/lib/libmpitrace.so

export EXE=$1
export TRACENAME=${EXE}_$3.prv

$@

trace.sh

#!/bin/bash

export NP=8
export INPUT=$1

cleo-submit -np $NP ./trace.sh ./HydroC -i $INPUT

appl.job

104

Trace control .xml
<?xml version='1.0'?>

 <trace enabled="yes“
 home="/home/judit/tools/extrae-2.3"
 initial-mode="detail"
 type="paraver"
 xml-parser-id="Id: xml-parse.c 799 2011-10-20 16:02:03Z harald $"
 >

 <mpi enabled="yes">
 <counters enabled="yes" />
 </mpi>

 <openmp enabled="no">
 <locks enabled="no" />
 <counters enabled="yes" />
 </openmp>

 <callers enabled="yes">
 <mpi enabled="yes">1-3</mpi>
 <sampling enabled="no">1-5</sampling>
 </callers>

…

extrae.xml

Activate MPI tracing and emit
hardware counters at MPI calls

Do not activate OpenMP tracing

Emit call stack information (number
of levels) at acquisition points

Details in $EXTRAE_HOME/share/example/MPI/extrae_explained.xml

105

Trace control .xml (cont)

 <user-functions enabled="no" list="/home/bsc41/bsc41273/user-functions.dat">
 <max-depth enabled="no">3</max-depth>
 <counters enabled="yes" />
 </user-functions>

…

extrae.xml (cont)

Add instrumentation at specified
user functions

Requires Dyninst based mpitrace

106

Trace control .xml (cont)

…

 <counters enabled="yes">

 <cpu enabled="yes" starting-set-distribution="1">
 <set enabled="yes" domain="all" changeat-globalops="5">
 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L2_DCM
 <sampling enabled="no" frequency="100000000">PAPI_TOT_CYC
 </set>
 <set enabled="yes" domain="user" changeat-globalops="5">
 PAPI_TOT_INS,PAPI_FP_INS,PAPI_TOT_CYC
 </set>
 </cpu>

 <network enabled=“no" />

 <resource-usage enabled=“no" />

 <memory-usage enabled="no" />

 </counters>

…

Emit counters or not

extrae.xml (cont)

OS info (context switches,….)

Groups

Interconnection network counters
Just at end of trace because of
large acquisition overhead

When to rotate
between groups

107

Trace control .xml (cont)

…

 <storage enabled="no">
 <trace-prefix enabled="yes">TRACE</trace-prefix>
 <size enabled="no">5</size>
 <temporal-directory enabled="yes" make-dir="no">/scratch</temporal-directory>
 <final-directory enabled="yes" make-dir="no">/gpfs/scratch/</final-directory>
 <gather-mpits enabled="no" />
 </storage>

 <buffer enabled="yes">
 <size enabled="yes">500000</size>
 <circular enabled="no" />
 </buffer>

…

Control of emitted trace …

mpitrace.xml (cont)

Size of in core buffer (#events)

… name, tmp and final dir
…

… max (MB) per process
size (stop tracing when
reached)

108

Trace control .xml (cont)

…

 <trace-control enabled="yes">
 <file enabled="no" frequency="5m">/gpfs/scratch/bsc41/bsc41273/control</file>
 <global-ops enabled="no"></global-ops>
 <remote-control enabled="no">
 <signal enabled="no" which="USR1"/>
 </remote-control>
 </trace-control>

 <others enabled=“no">
 <minimum-time enabled="no">10M</minimum-time>
 <terminate-on-signal enabled="no">USR2</terminate-on-signal>
 </others>

…

mpitrace.xml (cont)

External activation of tracing
(creation of file will start tracing)

Stop tracing after elapsed time …

… or when signal received

109

Trace control .xml (cont)

…

 <bursts enabled="no">
 <threshold enabled="yes">500u</threshold>
 <counters enabled="yes" />
 <mpi-statistics enabled="yes" />
 </bursts>

 <sampling enabled="no" type="default" period="5m" />

…

mpitrace.xml (cont)

… emit only computation
bursts of a minimal duration …

… plus summarized MPI events

Activate/not time based sampling and how often

110

…

 <merge enabled="yes"
 synchronization="default"
 binary="EXE"
 tree-fan-out="16"
 max-memory="512"
 joint-states="yes"
 keep-mpits="yes"
 sort-addresses="yes"
 >
 $TRACENAME$
 </merge>

</trace>

Trace control .xml (cont)

Merge individual traces into global
application trace at end of run …

mpitrace.xml (cont)

… into this trace name

111

LD_PRELOAD library selection

!   Library depends on programming model

Programming
model

Library

Serial libseqtrace
Pure MPI libmpitrace[f]1

Pure OpenMP libomptrace
Pure Pthreads libpttrace
CUDA libcudatrace
MPI + OpenMP libompitrace[f] 1
MPI + Pthreads libptmpitrace[f] 1
Mpi + CUDA libcudampitrace[f] 1

1 for Fortran codes

Scalability

113

Scalability of Presentation

!   Linpack @ Marenostrum: 10k cores x 1700 s

Dgemm
 IPC

2.95

2.85

Dgemm
L1 miss ratio

0.8

0.7!
Dgemm
duration

11.8 s

10 s!

114

Scalability of analysis

Jaguar

~ 47 seconds

Flow Tran

Jugene

~ 105 seconds

Flow Tran

8K cores

12K cores

16K cores

PFLOTRAN

115

Data reduction techniques

!   Software counters
–  Summarize information of some event types (ie. MPI calls) by emitting

aggregate counts
–  Emit counts at structurally relevant points (i.e. begin and end of long

computation phases)

!   Representative cuts
–  Emit full detail only on selected intervals, representative of full program

execution

!   On and off line combinations
–  By instrumentation
–  By paraver filtering

J. Labarta, et al.: “Scalability of tracing and visualization tools”, PARCO 2005

116

Software counters
Useful
duration

% MPI
time

collectives

Collective
bytes

p2p

p2p
bytes

p2p
BW

Speedup

0,000

1,000

2,000

3,000

4,000

5,000

6,000

0 2000 4000 6000 8000 10000

processors

S(P) Model Speedup

GADGET, PRACE Case A, 1024 procs

117

Software counters
Useful
duration

% MPI
time

collectives

Collective
bytes

p2p

p2p
bytes

p2p
BW

Speedup

0,000

1,000

2,000

3,000

4,000

5,000

6,000

0 2000 4000 6000 8000 10000

processors

S(P) Model Speedup

GADGET, PRACE Case A, 2048 procs

118

Software counters
Useful
duration

% MPI
time

collectives

Collective
bytes

p2p

p2p
bytes

p2p
BW

Speedup

0,000

1,000

2,000

3,000

4,000

5,000

6,000

0 2000 4000 6000 8000 10000

processors

S(P) Model Speedup

GADGET, PRACE Case A, 4096 procs

