
www.bsc.es

Parallel Scalable Algorithms-
Performance Parameters

Vassil Alexandrov, ICREA - Barcelona
Supercomputing Center, Spain

Overview

Sources of Overhead in Parallel Programs

Performance Metrics for Parallel Systems

Scalability of Parallel Systems and Algorithms

Analysis of Parallel Programs

Parameters

A sequential algorithm is evaluated by its runtime (in general,
asymptotic runtime as a function of input size).

The asymptotic runtime of a sequential program is identical on
any serial platform.

The parallel runtime of a program depends on the input size,
the number of processors, and the communication
parameters of the machine.

An algorithm must therefore be analyzed in the context of the
underlying platform.

A parallel system is a combination of a parallel algorithm and
an underlying platform.

Parameters
A number of performance measures are intuitive.

Wall clock time - the time from the start of the first processor
to the stopping time of the last processor in a parallel
ensemble. But how does this scale when the number of
processors is changed of the program is ported to another
machine altogether?

How much faster is the parallel version? This begs the
obvious follow up question – what is the baseline serial
version with which we compare?

Sources of Overhead in Parallel Programs

If I use two processors, shouldn’t my program run twice
as fast?
No - a number of overheads, including wasted
computation, communication, idling, and contention
cause degradation in performance.

 The execution profile of a hypothetical parallel program executing on eight
processing elements. Profile indicates times spent performing computation
(both essential and excess), communication, and idling.

Sources of Overheads in Parallel Programs
Interprocess interactions: Processors working on any non-
trivial parallel problem will need to talk to each other.

Idling: Processes may idle because of load imbalance,
synchronization, or serial components.

Excess Computation: This is computation not performed by
the serial version. This might be because the serial algorithm
is difficult to parallelize, or that some computations are
repeated across processors to minimize communication.

Performance Metrics for Parallel Systems: Execution
Time

Serial runtime of a program is the time elapsed between
the beginning and the end of its execution on a
sequential computer.

The parallel runtime is the time that elapses from the
moment the first processor starts to the moment the last
processor finishes execution.

We denote the serial runtime by and the parallel
runtime by TP .

Performance Metrics for Parallel Systems: Total
Parallel Overhead

Let Tall be the total time collectively spent by all the
processing elements.

TS is the serial time.

Observe that Tall - TS is then the total time spend by all
processors combined in non-useful work. This is called the
total overhead.

The total time collectively spent by all the processing
elements
Tall = p TP (p is the number of processors).

The overhead function (To) is therefore given by

 To = p TP - TS

 (1)

Performance Metrics for Parallel Systems: Speedup

What is the benefit from parallelism?

Speedup (S) is the ratio of the time taken to solve a
problem on a single processor to the time required to
solve the same problem on a parallel computer with p
identical processing elements.

 Speedup Sp=Ts/Tp

Performance Metrics: Example

Consider the problem of adding n numbers by using n
processing elements.

If n is a power of two, we can perform this operation in log n
steps by propagating partial sums up a logical binary tree of
processors.

Performance Metrics: Example

 Computing the global sum of 16
partial sums using 16 processing
elements . Σji denotes the sum of
numbers with consecutive labels
from i to j.

Performance Metrics: Speedup

For a given problem, there might be many serial algorithms
available. These algorithms may have different asymptotic
runtimes and may be parallelizable to different degrees.

For the purpose of computing speedup, we always consider
the best sequential program as the baseline.

Performance Metrics: Example (continued)

If an addition takes constant time, say, tc and communication
of a single word takes time ts + tw, we have the parallel time

 TP = Θ (log n)

We know that TS = Θ (n)

Speedup S is given by S = Θ (n / log n)

Performance Metrics: Speedup Bounds
Speedup can be as low as 0 (the parallel program never
terminates).

Speedup, in theory, should be upper bounded by p - after all,
we can only expect a p-fold speedup if we use times as many
resources.
Usually 0< Sp < p
A speedup greater than p is possible only if each processing
element spends less than time TS / p solving the problem.

In this case, a single processor could be timeslided to achieve
a faster serial program, which contradicts our assumption of
fastest serial program as basis for speedup.

Performance Metrics: Efficiency

Efficiency is a measure of the fraction of time for which
a processing element is usefully employed

Mathematically, it is given by

 = (2)

 0 < E < 1
Following the bounds on speedup, efficiency can be as
low as 0 and as high as 1.

Performance Metrics: Efficiency Example

The speedup of adding numbers on processors is given by

Efficiency is given by

 =

Effect of Granularity on Performance

Often, using fewer processors improves performance of
parallel systems.

Using fewer than the maximum possible number of
processing elements to execute a parallel algorithm is called
scaling down a parallel system.

A naive way of scaling down is to think of each processor in
the original case as a virtual processor and to assign virtual
processors equally to scaled down processors.

Since the number of processing elements decreases by a
factor of n / p, the computation at each processing element
increases by a factor of n / p.

The communication cost should not increase by this factor
since some of the virtual processors assigned to a physical
processors might talk to each other. This is the basic reason
for the improvement from building granularity.

Granularity: Example

Consider the problem of adding n numbers on p processing
elements such that p < n and both n and p are powers of 2.

Use the parallel algorithm for n processors, except, in this case, we
think of them as virtual processors.

Each of the p processors is now assigned n / p virtual processors.

The first log p of the log n steps of the original algorithm are
simulated in (n / p) log p steps on p processing elements.

Subsequent log n - log p steps do not require any communication.

Granularity: Example (continued)

The overall parallel execution time now is
 Θ ((n / p) log p).

The cost is Θ (n log p), which is asymptotically higher
than the Θ (n) cost of adding n numbers sequentially.
Therefore, the parallel (algorithm) system is not cost-
optimal.

Granularity: Example (continued)

Can we build granularity in the example in a cost-optimal fashion?

Each processing element locally adds its n / p numbers in time Θ (n / p).
The p partial sums on p processing elements can be added in time Θ(n /p).

A cost-optimal way of computing the sum of 16 numbers using four processing

elements.

Granularity: Example (continued)

The parallel runtime of this algorithm is

 (3)

The cost is

Scaling Characteristics of Parallel Programs

The efficiency of a parallel program can be written as:

 or (4)

The total overhead function To is an increasing
function of p.

Scaling Characteristics of Parallel Programs

For a given problem size (i.e., the value of TS remains
constant), as we increase the number of processing
elements, To increases.

The overall efficiency of the parallel program goes down.
This is the case for all parallel programs.

Scaling Characteristics of Parallel Programs: Example

Consider the problem of adding numbers on processing
elements.

We have seen that:

 = (5)

 = (6)

 = (7)

Scaling Characteristics of Parallel Programs: Example (continued)

 Plotting the speedup for various input sizes gives us:

Speedup versus the number of processing elements for adding a list of numbers.
Speedup tends to saturate and efficiency drops as a consequence of Amdahl's law

Scaling Characteristics of Parallel Programs

Total overhead function To is a function of both problem size Ts and
the number of processing elements p.

In many cases, To grows sub-linearly with respect to Ts.

In such cases, the efficiency increases if the problem size is
increased keeping the number of processing elements constant.

For such systems, we can simultaneously increase the problem
size and number of processors to keep efficiency constant.

We call such systems scalable parallel systems.

Scalability

For a given problem size, as we increase the number of
processing elements, the overall efficiency of the parallel
system goes down for all systems.

For some systems, the efficiency of a parallel system
increases if the problem size is increased while keeping
the number of processing elements constant.

Scalability

What is the rate at which the problem size must increase with
respect to the number of processing elements to keep the
efficiency fixed?

This rate determines the scalability of the system. The slower
this rate, the better.

Before we formalize this rate, we define the problem size W
as the asymptotic number of operations associated with the
best serial algorithm to solve the problem.

Isoefficiency Metric of Scalability
We can write parallel runtime as:

(8)

The resulting expression for speedup is

(9)

Finally, we write the expression for efficiency as

Isoefficiency Metric of Scalability

For scalable parallel systems, efficiency can be maintained at a fixed value
(between 0 and 1) if the ratio To / W is maintained at a constant value.
For a desired value E of efficiency,

 (11)

If K = E / (1 – E) is a constant depending on the efficiency to be
maintained, since To is a function of W and p, we have

 (12)

Isoefficiency Metric of Scalability

The problem size W can usually be obtained as a function of
p by algebraic manipulations to keep efficiency constant.

This function is called the isoefficiency function.

This function determines the ease with which a parallel
system can maintain a constant efficiency and hence achieve
speedups increasing in proportion to the number of
processing elements

Other Scalability Metrics

A number of other metrics have been proposed, dictated by
specific needs of applications.

For real-time applications, the objective is to scale up a
system to accomplish a task in a specified time bound.

In memory constrained environments, metrics operate at the
limit of memory and estimate performance under this problem
growth rate.

Amdahl’s Law - Fixed problem size

In many practical applications the computational workload is
fixed:
Two parts for the problem with size W :
sequential and parallel part

W = αW + (1- α)W

Sp = W / (αW + (1- α)(W/p))

= p / (1 + (p - 1) α) → 1 / α as p → ∞

Speedup is limited by 1 / α

	Parallel Scalable Algorithms-�Performance Parameters
	Overview
	Parameters
	Parameters
	Sources of Overhead in Parallel Programs
	Sources of Overheads in Parallel Programs
	Performance Metrics for Parallel Systems: Execution Time
	Performance Metrics for Parallel Systems: Total Parallel Overhead
	Performance Metrics for Parallel Systems: Speedup
	Performance Metrics: Example
	Performance Metrics: Example
	Performance Metrics: Speedup
	Performance Metrics: Example (continued)
	Performance Metrics: Speedup Bounds
	Performance Metrics: Efficiency
	Performance Metrics: Efficiency Example
	Effect of Granularity on Performance
	Granularity: Example
	Granularity: Example (continued)
	Granularity: Example (continued)
	Granularity: Example (continued)
	Scaling Characteristics of Parallel Programs
	Scaling Characteristics of Parallel Programs
	Scaling Characteristics of Parallel Programs: Example
	Scaling Characteristics of Parallel Programs: Example (continued)
	Scaling Characteristics of Parallel Programs
	Scalability
	Scalability
	Isoefficiency Metric of Scalability
	Isoefficiency Metric of Scalability
	Isoefficiency Metric of Scalability
	Other Scalability Metrics
	Amdahl’s Law - Fixed problem size

