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BSC-CNS 
 
Barcelona Supercomputing Center – Centro Nacional de Supercomputación 
(BSC-CNS) is the Spanish National Supercomputing  Center. 

  
 

 
 

 
The BSC mission: 

– To investigate, develop and manage technology to facilitate the advancement of 
science. 

 
The BSC objectives: 

– To perform R&D in Computer Sciences and e-Sciences 
– To provide Supercomputing support to external research. 

 
BSC is a consortium that includes: 

– the Spanish Government – 51% 
– the Catalan Government – 37% 
– the Technical University of Catalonia – 12% 
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Unique role as HPC provider and R&D Center 
Leading Expertise in Computer, Life, Earth & Physical 
Sciences 
Internally developed technologies 
International prestige 
Severo Ochoa recognition 
Link to large Spanish industries 
Multicultural and multidisciplinary young and motivated 
team 
Training skills 
Location 

 
 

BSC profile in Education and Training 
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Professional Training 

Awarded  Advanced Training Centre by PRACE 
– 12 events per academic year  
– Core, Specialised, Scientific Community specific and Industry 

focused courses  

BSC leads the Spanish SC Network training through 
RES  
– Workshops, tutorials and lectures  

Severo Ochoa Research Seminar Lectures 
– Monthly event 
– BSC researchers and invited speakers 
– Topics covering the research from all 4 departments 

Severo Ochoa Doctoral Symposium 
 
 

 
 



Focus on the Existing Skills Gap Relevant to HPC  

Computational Scientists (Scientists with HPC 
capabilities and multidisciplinary skills) 

Programmers for heterogeneous systems 

Parallel programmers  

Algorithm developers for computational science  

HPC systems administration  

Managers with expertise in Computational Science 



PRACE Research Infrastructure 
Establishment of the legal framework 
– PRACE AISBL created with seat in Brussels in April 

(Association Internationale Sans But Lucratif) 
– 24 members representing 20 European countries 

• Hosting members: France, Germany, Italy, Spain 
– Inaugurated in Barcelona on June 9, 2010 

 
 
 

 
Funding secured for 2010 - 2015 
– 400 Million € from France (GENCI), Germany (GCS),  

Italy (CINECA), Spain (BSC) 
Provided as Tier-0 services on TCO basis 

– 70+ Million € from EC FP7 for preparatory and implementation 
Grants INFSO-RI-211528 and 261557  
Complemented by ~ 60 Million € from PRACE members 
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PRACE model of professional training (1/2) 

Centres of Excellence in Professional Training: 
– Barcelona Supercomputing Centre (Spain),  

– CINECA - Consorzio Interuniversitario (Italy),  

– CSC - IT Centre for Science Ltd (Finland),  

– EPCC at the University of Edinburgh (UK),  

– Gauss Centre for Supercomputing (Germany)  

– Maison de la Simulation (France) 
 
 



PRACE model of professional training (2/2) 

Common Curricula Paths with Localized Syllabus 



Professional Training Courses at BSC (2013-14) 

Code Course Title Level / days Dates 

BSC10 Parallel Programming Workshop L1 -1; L2 - 4 14 -18.10. 2013 

BSC09 Introduction to simulation environment for Earth Sciences C/C- 2 12 -13.12. 2013 

BSC11i System Administration on a Petaflop System, MareNostrum III L3 - 2 27, 28.01.2014 

BSC13i 13th VI - HPC Tuning Workshop  L2/3 Feb 2014 

BSC14 Programming Distributed Computing Platforms with COMPSs L2/3 Feb 2014 

BSC07 Engineering simulation tools: ALYA, FALL3D & PANDORA C/C - 3 05 -07.02. 2014 

BSC08 Simulation environment for Life Sciences C/C - 2 13 -14.03. 2014 

BSC06 Systems Workshop: Programming  MareNostrum III L2 - 2 10 -11.04. 2014 

BSC01 Performance Analysis and Tools L2 -1; L3 - 1 12 -13.05. 2014 

BSC02 Heterogeneous Programming on GPUs with MPI + OmpSs L2 -1; L3 - 1 14 -15.05. 2014 

BSC03 Programming ARM based prototypes L3 - 1 16.05. 2014 

BSC04 Introduction to CUDA Programming (with CCOE) L2 - 5 02 -06.05. 2014 

BSC12i Alya System as a Computational Mechanics Environment C/C - 2  June 2014 

BSC05 PUMPS Summer School (with CCOE) L2 -1; L3 - 4  July 2014 



THE COURSE PROGRAMME 



Lecture Plan: 

Day 1 
Session 1 / 10:00 am – 1:00 pm 
1. Introduction to parallel architectures, parallel algorithms design and 
performance metrics. 
2. Introduction to the MPI programming model 
3. Practical: How to compile and run MPI applications 
Session 2 / 2:00pm – 5:00 pm 
1. Introduction to Paraver tool: tool to analyze and understand 
performance 
2. Practical: Trace generation and trace analysis 



Lecture Plan: 

Day 2 
Session 1 / 10:00 am - 1:00 pm 
1. Tareador: understanding and predicting the potential of task 
decomposition strategies 
2. MPI: Point-to-point communication, collective communication 
3. Practical: Simple matrix computations 
Session 2 / 2:00 pm - 5:00 pm 
1. MPI: Blocking and non-blocking communications 
2. MPI: Communicators, Topologies 
3. Practical: Heat equation example 



Lecture Plan: 

Day 3  
Session 1 / 10:00 am - 1:00 pm 
1. Dimemas: Scalability simulation for MPI applications 
2. Practical: Scalability simulations using Dimemas 
Session 2 / 2:00 pm - 5:00 pm 
1. xSim: Online scalability simulations for MPI applications 
2. Practical: Scalability simulations using xSim 
3. Additional MPI features:  Error handling, parallel libraries, I/O and 
fault tolerance 



Lecture Plan: 

Day 4  
Session 1 / 10:00am – 1:00 pm 
1. Shared-memory programming models, OpenMP fundamentals 
2. Parallel regions and work sharing constructs 
3. Synchronization mechanisms in OpenMP 
4. Practical: heat diffusion in OpenMP 
Session 2 / 2:00pm – 5:00 pm 
1. Programming using a hybrid MPI/OpenMP approach 
2. Practical: heat diffusion in hybrid MPI/OpenMP 



Lecture Plan: 

Day 5  
Session 1 / 10:00 am – 1:00 pm 
1. Tasking in OpenMP 3.0 and 4.0 
2. Introduction to the OmpSs programming model 
3. Practical: heat equation example and divide-and-conquer 
Session 2 / 2:00pm – 5:00 pm 
1. Programming using a hybrid MPI/OmpSs approach 
2. Practical: heat equation example and divide-and-conquer 
 
END of COURSE 
 
 



1st Lecture Outline: 

 

• Introduction   
• Computer Architectures Overview 
• Parallel Algorithms and Parallelisation 

Techniques  
• Performance Evaluation and Performance 

Metrics  



INTRODUCTION 







Projected Performance Development 



Road to Exascale 

Prof. Jack Dongarra, ScalA12, SLC, USA 



COMPUTER ARCHITECTURES 



Flynn’s Taxonomy 

 
• SISD – Single Instruction/ Single Data Stream 
• SIMD – Single Instruction/Multiple Data Stream 
• MISD -  Multiple Instruction/Single Data Stream 
• MIMD - Multiple Instruction/Multiple Data Stream 

 



SISD -  Traditional x86 



MIMD   -   Distributed Memory vs. Shared Memory 



Accelerator  type architectures:   IBM Cell architechture 

8 separate 
computational units 
SPE 
Data needs to be 
transferred on a 
special bus between 
main PowerPC CPU 
and SPEs 



GPU Accelerators 



Modern Multi-Cores 



Multi- & Many-Core Architectures 



Adding External Accelerators 





BSC SUPERCOMPUTERS 
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MareNostrum III 

IBM iDataPlex cluster with 3028 compute nodes 

• Peak Performance of 1 Petaflops 
• 48,448 Intel SandyBridge-EP E5-2670 cores 

at 2.6 GHz 
• Two 8 core CPUs per node (16 cores/node) 
• 94.625 TB of main memory (32 GB/node) 
• 1.9 PB of disk storage 
• Interconnection networks: 

• Infiniband 
• Gigabit Ethernet 

• Operating System: Linux - SuSe Distribution 
• Consisting of 36 racks 
• Footprint:120m2 

Completed system  - 48,448 cores and predicted to be in the top 25 
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MinoTauro 

NVIDIA GPU cluster with 128 Bull B505 blades 

• 2 Intel E5649 6-Core processors at 2.53 GHz 
per node; in total 5544 cores 

• 2 M2090 NVIDIA GPU Cards 
• 24 GB of Main memory 
• Peak Performance: 185.78 TFlops 
• 250 GB SSD (Solid State Disk) as local 

storage 
• 2 Infiniband QDR (40 Gbit each) to a non-

blocking network 
• RedHat Linux 
• 14 links of 10 GbitEth to connect to BSC 

GPFS Storage 

The Green 500 list November 2012: #36 with 1266 Mflops/Watt, 81.5 kW total Power 



PARALLEL SCALABLE ALGORITHMS- 
PARALLELIZATION TECHNIQUES 



Scalable Algorithms: Motivation/Drivers 

• Bridging the Performance Gap while dealing with 
Hybrid Architectures 

• Increased Scalability  
• Highly fault-tolerant  and fault-resilient algorithms 
• Need to calculate with higher precision without 

restart 
• Need to tackle efficiently Grand Challenges 

problems  



Challenges 

  To achieve excellent results scalability at 
all levels would be required: 

 
Mathematical models level 
Algorithmic level 
Systems level 
 



Parallel Algorithms and Concurrency  

Parallel Algorithms  
– Tasks and Decomposition  
– Processes and Mapping  
– Processes Versus Processors  

Decomposition Techniques  
– Recursive Decomposition  
– Recursive Decomposition  
– Exploratory Decomposition  
– Hybrid Decomposition  

Characteristics of Tasks and Interactions  
– Task Generation, Granularity, and Context  
– Characteristics of Task Interactions.  



Mapping 

Mapping Techniques for Load Balancing  
Methods for Minimizing Interaction Overheads  
Parallel Algorithm Design Models  

 



Decomposition, Tasks, and Dependency Graphs 

The first step in developing a parallel algorithm is to 
decompose the problem into tasks that can be executed 
concurrently  
A given problem may be decomposed into tasks in many 
different ways.  
Tasks may be of same, or different sizes.  
A decomposition can be illustrated in the form of a 
directed graph with nodes corresponding to tasks and 
edges indicating that the result of one task is required for 
processing the next. Such a graph is called a task 
dependency graph.   



Multiplying a Dense Matrix with a Vector 

Computation of each element of output vector y is independent of other elements. Based 
on this, a dense matrix-vector product can be decomposed into n tasks. The figure 

highlights the portion of the matrix and vector accessed by Task 1.  
 

Observations: While tasks share data (namely, the vector b ), they do not have any control 
dependencies - i.e., no task needs to wait for the (partial) completion of any other. All 
tasks are of the same size in terms of number of operations. Is this the maximum number 
of tasks we could decompose this problem into?  



Granularity of Task Decompositions  

The number of tasks into which a problem is 
decomposed determines its granularity.  
Decomposition into a large number of tasks results in 
fine-grained decomposition and that into a small number 
of tasks results in a coarse grained decomposition.  

A coarse grained version of the dense matrix-vector product 
example. Each task in this example corresponds to the 
computation of p=3 elements of the result vector.  



Degree of Concurrency  

The number of tasks that can be executed in parallel is the 
degree of concurrency of a decomposition.  
Since the number of tasks that can be executed in parallel 
may change over program execution, the maximum degree of 
concurrency is the maximum number of such tasks at any 
point during execution. What is the maximum degree of 
concurrency of the database query examples?  
The average degree of concurrency is the average number of 
tasks that can be processed in parallel over the execution of 
the program. Assuming that each tasks in the database 
example takes identical processing time, what is the average 
degree of concurrency in each decomposition?  
The degree of concurrency increases as the decomposition 
becomes finer in granularity and vice versa.  

 



Limits on Parallel Performance  

It would appear that the parallel time can be made 
arbitrarily small by making the decomposition finer in 
granularity.  
There is an inherent bound on how fine the granularity of 
a computation can be. For example, in the case of 
multiplying a dense matrix with a vector, there can be no 
more than (n2) concurrent tasks.  
Concurrent tasks may also have to exchange data with 
other tasks. This results in communication overhead. The 
tradeoff between the granularity of a decomposition and 
associated overheads often determines performance 
bounds.  

 



Processes and Mapping  

In general, the number of tasks in a decomposition 
exceeds the number of processing elements available.  
 
For this reason, a parallel algorithm must also provide a 
mapping of tasks to processes.  
 

  



Processes and Mapping  

Appropriate mapping of tasks to processes is critical to 
the parallel performance of an algorithm.  
Mappings are determined by both the task dependency 
and task interaction graphs.  
Task dependency graphs can be used to ensure that 
work is equally spread across all processes at any point 
(minimum idling and optimal load balance).  
Task interaction graphs can be used to make sure that 
processes need minimum interaction with other 
processes (minimum communication).  

 



Processes and Mapping  

An appropriate mapping must minimize parallel execution 
time by:  

 
Mapping independent tasks to different processes.  
Assigning tasks on critical path to processes as soon as 
they become available.  
Minimizing interaction between processes by mapping 
tasks with dense interactions to the same process.  

    Note: These criteria often conflict with each other. For 
example, a decomposition into one task (or no 
decomposition at all) minimizes interaction but does not 
result in a speedup at all!   



Decomposition Techniques  

 So how does one decompose a task into various 
subtasks?  

 While there is no single recipe that works for all 
problems, we present a set of commonly used 
techniques that apply to broad classes of problems. 
These include:  

 
• recursive decomposition  
• data decomposition  
• exploratory decomposition 
• hybrid decomposition  
 
 



Data Decomposition: Example  

 Consider the problem of multiplying two n x n matrices A and B 
to yield matrix C. The output matrix C can be partitioned into 
four tasks as follows:  

Task 1:  

Task 2: 

Task 3: 

Task 4:  



Data Decomposition: Example  
 A partitioning of output data does not result in a unique 

decomposition into tasks. For example, for the same problem 
as in previous slide, with identical output data distribution, we 
can derive the following two (different) decompositions:  

Decomposition I Decomposition II 

Task 1:  C1,1 = A1,1 B1,1   

Task 2:  C1,1 = C1,1 + A1,2 B2,1  

Task 3:  C1,2 = A1,1 B1,2  

Task 4:  C1,2 = C1,2 + A1,2 B2,2  

Task 5:  C2,1 = A2,1 B1,1  

Task 6:  C2,1 = C2,1 + A2,2 B2,1  

Task 7:  C2,2 = A2,1 B1,2  

Task 8:  C2,2 = C2,2 + A2,2 B2,2  

Task 1:  C1,1 = A1,1 B1,1    

Task 2:  C1,1 = C1,1 + A1,2 B2,1  

Task 3:  C1,2 = A1,2 B2,2  

Task 4:  C1,2 = C1,2 + A1,1 B1,2  

Task 5:  C2,1 = A2,2 B2,1  

Task 6:  C2,1 = C2,1 + A2,1 B1,1  

Task 7:  C2,2 = A2,1 B1,2  

Task 8:  C2,2 = C2,2 + A2,2 B2,2  



Intermediate Data Partitioning  

Computation can often be viewed as a sequence of 
transformation from the input to the output data.  
In these cases, it is often beneficial to use one of the 
intermediate stages as a basis for decomposition.  
 



Intermediate Data Partitioning: Example  

 Let us revisit the example of dense matrix multiplication. We first show how 
we can visualize this computation in terms of intermediate matrices  D.  



Intermediate Data Partitioning 
 A decomposition of intermediate data structure   leads to the 

following decomposition into 8 + 4 tasks: 
                Stage I 

Stage II 

Task 01:  D1,1,1= A1,1 B1,1 Task 02:  D2,1,1= A1,2 B2,1 

Task 03:  D1,1,2= A1,1 B1,2 Task 04:  D2,1,2= A1,2 B2,2 

Task 05:  D1,2,1= A2,1 B1,1 Task 06:  D2,2,1= A2,2 B2,1 

Task 07:  D1,2,2= A2,1 B1,2 Task 08:  D2,2,2= A2,2 B2,2 

Task 09:  C1,1 = D1,1,1 + D2,1,1 Task 10:  C1,2 = D1,1,2 + D2,1,2 

Task 11:  C2,1 = D1,2,1 + D2,2,1 Task 12:  C2,,2 = D1,2,2 + D2,2,2 



Exploratory Decomposition  

In many cases, the decomposition of the problem goes 
hand-in-hand with its execution.  
These problems typically involve the exploration (search) 
of a state space of solutions.  
Problems in this class include a variety of discrete 
optimization problems (0/1 integer programmin, etc.), 
theorem proving, game playing, etc.  



Speculative Decomposition  

In some applications, dependencies between tasks are not 
known a-priori.  
For such applications, it is impossible to identify independent 
tasks.  
There are generally two approaches to dealing with such 
applications: conservative approaches, which identify 
independent tasks only when they are guaranteed to not have 
dependencies, and, optimistic approaches, which schedule 
tasks even when they may potentially be erroneous.  
Conservative approaches may yield little concurrency and 
optimistic approaches may require roll-back mechanism in the 
case of an error.  



Characteristics of Tasks  

 Once a problem has been decomposed into independent 
tasks, the characteristics of these tasks critically impact 
choice and performance of parallel algorithms. Relevant 
task characteristics include:  
Task generation.  
Task sizes.  
Size of data associated with tasks.  
 



Task Generation  

Static task generation: Concurrent tasks can be identified 
a-priori ( matrix operations). 
Dynamic task generation (generated during computation) 



Task Sizes  

Task sizes may be uniform (i.e., all tasks are the same 
size) or non-uniform.  
Non-uniform task sizes may be such that they can be 
determined (or estimated) a-priori or not.  
Examples in this class include discrete optimization 
problems, in which it is difficult to estimate the effective 
size of a state space.  



Size of Data Associated with Tasks  

The size of data associated with a task may be small or 
large when viewed in the context of the size of the task.  
A small context of a task implies that an algorithm can 
easily communicate this task to other processes 
dynamically.  
A large context ties the task to a process, or alternately, 
an algorithm may attempt to reconstruct the context at 
another processes as opposed to communicating the 
context of the task (e.g., 0/1 integer programming).  



Characteristics of Task Interactions  

Tasks may communicate with each other in various ways. 
The associated dichotomy is:  
Static interactions: The tasks and their interactions are 
known a-priori. These are relatively simpler to code into 
programs.  
Dynamic interactions: The timing or interacting tasks 
cannot be determined a-priori. These interactions are 
harder to code, especially, as we shall see, using 
message passing APIs. 



Characteristics of Task Interactions  

Regular interactions: There is a definite pattern (in the 
graph sense) to the interactions. These patterns can be 
exploited for efficient implementation.  
Irregular interactions: Interactions lack well-defined 
topologies.  



Characteristics of Task Interactions  

Interactions may be read-only or read-write.  
In read-only interactions, tasks just read data items 
associated with other tasks.  
In read-write interactions tasks read, as well as modify 
data items associated with other tasks.  
In general, read-write interactions are harder to code, 
since they require additional synchronization primitives.  



Characteristics of Task Interactions  

Interactions may be one-way or two-way.  
A one-way interaction can be initiated and accomplished 
by one of the two interacting tasks.  
A two-way interaction requires participation from both 
tasks involved in an interaction.  
One way interactions are somewhat harder to code in 
message passing APIs.  



Mapping Techniques  

Once a problem has been decomposed into concurrent 
tasks, these must be mapped to processes (that can be 
executed on a parallel platform).  
Mappings must minimize overheads.  
Primary overheads are communication and idling.  
Minimizing these overheads often represents 
contradicting objectives.  
Assigning all work to one processor trivially minimizes 
communication at the expense of significant idling.  



Mapping Techniques for Minimum Idling 

 Mapping techniques can be static or dynamic.  
 

Static Mapping: Tasks are mapped to processes a-priori. For 
this to work, we must have a good estimate of the size of each 
task. Even in these cases, the problem may be NP complete.  
Dynamic Mapping: Tasks are mapped to processes at runtime. 
This may be because the tasks are generated at runtime, or 
that their sizes are not known.  

  
 Other factors that determine the choice of techniques include 

the size of data associated with a task and the nature of 
underlying domain. 



Schemes for Static Mapping  

Mappings based on data partitioning.  
Mappings based on task graph partitioning – functional 
decomposition 
Hybrid mappings.  



Block Array Distribution Schemes  

 Block distribution schemes can be generalized to higher 
dimensions as well.  



Cyclic and Block Cyclic Distributions  

If the amount of computation associated with data items 
varies, a block decomposition may lead to significant 
load imbalances.  
A simple example of this is in LU decomposition (or 
Gaussian Elimination) of dense matrices.  



Block-Cyclic Distribution  

• A cyclic distribution is a special case in which block size is one.  
• A block distribution is a special case in which block size is n/p  , 

where n is the dimension of the matrix and p is the number of 
processes.  



Mappings Based on Task Partitioning  

Partitioning a given task-dependency graph across 
processes.  
Determining an optimal mapping for a general task-
dependency graph is an NP-complete problem.  
Excellent heuristics exist for structured graphs.  



Hierarchical Mappings  

Sometimes a single mapping technique is inadequate.  
For example, the task mapping of the binary tree 
(quicksort) cannot use a large number of processors.  
For this reason, task mapping can be used at the top 
level and data partitioning within each level.  
 



Minimizing Interaction Overheads  

Maximize data locality: Where possible, reuse 
intermediate data. Restructure computation so that data 
can be reused in smaller time windows.  
Minimize volume of data exchange: There is a cost 
associated with each word that is communicated. For this 
reason, we must minimize the volume of data 
communicated.  
Minimize frequency of interactions: There is a startup 
cost associated with each interaction. Therefore, try to 
merge multiple interactions to one, where possible.  
Minimize contention and hot-spots: Use decentralized 
techniques, replicate data where necessary.  



Minimizing Interaction Overheads (continued)  

Overlapping computations with interactions: Use non-
blocking communications, multithreading, and 
prefetching to hide latencies.  
Replicating data or computations.  
Using group communications instead of point-to-point 
primitives.  
Overlap interactions with other interactions.  



Parallel Algorithm Models  

An algorithm model is a way of structuring a parallel algorithm by 
selecting a decomposition and mapping technique and applying the 
appropriate strategy to minimize interactions.  
 
Data Parallel Model (Data Decomposition): Tasks are statically (or 
semi-statically) mapped to processes and each task performs similar 
operations on different data. 
 
Task Graph Model (Functional Decomposition): Starting from a task 
dependency graph, the interrelationships among the tasks are 
utilized to promote locality or to reduce interaction costs.  
 



Parallel Algorithm Models (cont.)  

SPMD – Single Program Multiple Data model 
MPMD – Multiple Programs Multiple Data model 
Master-Slave Model: One or more processes generate 
work and allocate it to worker processes. This allocation 
may be static or dynamic.  
Pipeline / Producer-Consumer Model: A stream of data is 
passed through a succession of processes, each of 
which perform some task on it.  
Hybrid Models: A hybrid model may be composed either 
of multiple models applied hierarchically or multiple 
models applied sequentially to different phases of a 
parallel algorithm.  
 



Parallel Algorithms Design 

Start from an existing  sequential algorithm and design 
new parallel one. 
Start from existing parallel algorithms and improve it. 
Design  completely new parallel algorithm. 
 



Parallel Algorithms Design  -  Summary 

Choose the  initial decomposition technique depending 
on the given problem. 
Replicate the data to minimize the communication if 
necessary 
Define initial task sizes. 
Map initial parallel algorithm onto parallel architecture. 
Calibrate the algorithm by optimizing the task size and 
minimizing the communication. 
Arrive iteratively into the refined parallel algorithm. 

Remember, the parallel algorithm has to be much faster 
than the sequential one! 
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