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BSC-CNS

(€ Barcelona Supercomputing Center — Centro Nacional de Supercomputacion
(BSC-CNS) is the Spanish National Supercomputing Center.
.'_ b .' - Y T/ e . -

€ The BSC mission:

— To investigate, develop and manage technology to facilitate the advancement of
science.

(€ The BSC objectives:
— To perform R&D in Computer Sciences and e-Sciences E ’g_
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— To provide Supercomputing support to external research.

¥ Generalitat de Catalunya

€ BSCisa consortium that includes: Departament d'Economia
— the Spanish Government — 51% ALY i Coneixement
— the Catalan Government — 37% I P
— the Technical University of Catalonia — 12% @ Eince onATECK
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BSC profile in Education and Training

({
({

({
({
({
({
({

({
({

Unique role as HPC provider and R&D Center

Leading Expertise in Computer, Life, Earth & Physical
Sciences

Internally developed technologies
International prestige

Severo Ochoa recognition

Link to large Spanish industries

Multicultural and multidisciplinary young and motivated
team

Training skills
Location




Professional Training

(€ Awarded Advanced Training Centre by PRACE

— 12 events per academic year

— Core, Specialised, Scientific Community specific and Industry
focused courses

({ BSC leads the Spanish SC Network training through
RES

— Workshops, tutorials and lectures

( Severo Ochoa Research Seminar Lectures
— Monthly event
— BSC researchers and invited speakers
— Topics covering the research from all 4 departments

( Severo Ochoa Doctoral Symposium




Focus on the Existing Skills Gap Relevant to HPC

(€ Computational Scientists (Scientists with HPC
capabilities and multidisciplinary skills)

(€ Programmers for heterogeneous systems

({ Parallel programmers

(€ Algorithm developers for computational science
(€ HPC systems administration

(€ Managers with expertise in Computational Science
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PRACE Research Infrastructure

({ Establishment of the legal framework

— PRACE AISBL created with seat in Brussels in Apr
(Association Internationale Sans But Lucratif)

— 24 members representing 20 European countries
e Hosting members: France, Germany, Italy, Spain
— Inaugurated in Barcelona on June 9, 2010

=ETlIIm=]1ll=i

({ Funding secured for 2010 - 2015

— 400 Million € from France @ENCI) Germany (GCS),
ltaly (CINECA), Spain (BS
Provided as Tier- serwces on TCO basis

— 70+ Million € from EC FP7 for preparatory and implementat {38
Grants INFSO-RI-211528 and 261557
Complemented by ~ 60 Million € from PRACE members

“
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http://www.flaggezeigen.de/catalog/product_info.php?products_id=848&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=469&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=474&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=476&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=443&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=527&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=529&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=531&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=550&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=553&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=533&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=565&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=921&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=544&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=568&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=526&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=469&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=572&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=566&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=558&osCsid=419ba85839d98946a8c35337d98692f3

PRACE model of professional training (1/2)

({ Centres of Excellence in Professional Training:

— Barcelona Supercomputing Centre (Spain),

— CINECA - Consorzio Interuniversitario (Italy),
— CSC - IT Centre for Science Ltd (Finland),

— EPCC at the University of Edinburgh (UK),

— Gauss Centre for Supercomputing (Germany)

— Maison de la Simulation (France)
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PRACE model of professional training (2/2)

(€ Common Curricula Paths with Localized Syllabus

COMmmon L3
Systems workshops (Tier-0)
Advanced Performance analysis, optimisation, debugging
Mixed-maode parallel programming (advanced)
Accelerators (advanced)
['0 optimisation & parallel 1O (advanced)
2,5 = 4
E % E Systems workshops (Tier-1 & Tier-0)
= = Performance analysis, optimisation, debugging
Intermediate gg ® Mixed-mode paralllel programming (introductory)
a2 i Accelerators (introductory)
eT= /0 optimisation & parallel 'O (introductory)
= c
T PGAS
= i
w o
L1
: - optional
Message passing (MPI)
. Threading (OpenMP) Entry-level preparatory courses:
Basic Sy stems worksh ops (Tier-1) Scientific programming & computing
PGAS

Clomain-specific courses, e.g.:
Computational chemistry,
Users engineering, CFD, life science, earh

science, material science
Barcelona
Supercomputing
Center
Centro Nacional de Supercomputacion




Professional Training Courses at BSC (2013-14)

®

Parallel Programming Workshop

Introduction to simulation environment for Earth Sciences

System Administration on a Petaflop System, MareNostrum III

13" VI - HPC Tuning Workshop

Programming Distributed Computing Platforms with COMPSs
Engineering simulation tools: ALYA, FALL3D & PANDORA
Simulation environment for Life Sciences

Systems Workshop: Programming MareNostrum IlI
Performance Analysis and Tools

Heterogeneous Programming on GPUs with MPI + OmpSs
Programming ARM based prototypes

Introduction to CUDA Programming (with CCOE)

Alya System as a Computational Mechanics Environment

PUMPS Summer School (with CCOE)

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

L1-1;L2-4

C/C-2
L3-2

L2/3

L2/3
Cc/IC-3
C/C-2

L2 -2
L2-1;L3-1
L2-1;L3-1
L3 -1

L2-5
C/C-2

L2-1;L3-4

14 -18.10. 2013

12 -13.12. 2013
27, 28.01.2014

Feb 2014

Feb 2014

05 -07.02. 2014
13 -14.03. 2014
10-11.04. 2014
12 -13.05. 2014
14 -15.05. 2014
16.05. 2014

02 -06.05. 2014
June 2014

July 2014
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Lecture Plan:

Day 1
Session 1/10:00 am — 1:00 pm

1. Introduction to parallel architectures, parallel algorithms design and
performance metrics.

2. Introduction to the MPI programming model
3. Practical: How to compile and run MPI applications
Session 2/2:00pm —5:00 pm

1. Introduction to Paraver tool: tool to analyze and understand
performance

2. Practical: Trace generation and trace analysis
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Lecture Plan:

Day 2
Session 1/10:00 am - 1:00 pm

1. Tareador: understanding and predicting the potential of task
decomposition strategies

2. MPI: Point-to-point communication, collective communication
3. Practical: Simple matrix computations

Session 2/2:00 pm - 5:00 pm

1. MPI: Blocking and non-blocking communications

2. MPIl. Communicators, Topologies

3. Practical: Heat equation example

Barcelona
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Lecture Plan:

Day 3

Session 1/10:00 am - 1:00 pm

1. Dimemas: Scalability simulation for MPI applications

2. Practical: Scalability simulations using Dimemas
Session 2/2:00 pm - 5:00 pm

1. xSim: Online scalability simulations for MPI applications
2. Practical: Scalability simulations using xSim

3. Additional MPI features: Error handling, parallel libraries, 1/0 and
fault tolerance

Barcelona
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Lecture Plan:

Day 4

Session 1/10:00am — 1:00 pm

1. Shared-memory programming models, OpenMP fundamentals
2. Parallel regions and work sharing constructs

3. Synchronization mechanisms in OpenMP

4. Practical: heat diffusion in OpenMP

Session 2/2:00pm —5:00 pm

1. Programming using a hybrid MPI1/OpenMP approach

2. Practical: heat diffusion in hybrid MP1/OpenMP




Lecture Plan:

Day 5

Session 1/10:00 am — 1:00 pm

1. Tasking in OpenMP 3.0 and 4.0

2. Introduction to the OmpSs programming model

3. Practical: heat equation example and divide-and-conquer
Session 2/2:00pm —5:00 pm

1. Programming using a hybrid MPI/OmpSs approach

2. Practical: heat equation example and divide-and-conquer

END of COURSE




1st Lecture Outline:

e Introduction
Computer Architectures Overview

« Parallel Algorithms and Parallelisation
Techniques

e Performance Evaluation and Performance
Metrics
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ARCHITECTURES
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Projected Performance Development

Projected Performance Development
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Road to Exascale

€. Potential System Architecture
~_with a cap of $200M and 20MW

Systems 2012 Difference
B6/Q Today & 2022
Computer

System peak 20 Pflop/s 1 Eflop/s O(100)
Power 8.6 MW ~20 MW
(2 Gflops/W) (50 &flops/w) —
1.6 PB 32 -64PB ooy
System memory e SeRct _(_;L/’)
Node performance 205 GF/s 1.2 or 15TF/s O(10) - O(100)
(16*1 6GHZ*E)
Node memory BW 42 6 GB/s 2-4TB/s O(1000)
Node concurrenc 64 ~ O(1k) or 10k O(100) - Oiﬁ)aj))
i Threads <-—————____H__ T S
Total Node Interconnect 20 GB/s 200-400GB/s O(10)
BW
Sysfe_m size (nodes) (98,304) O(100,000) or O(1M) O(100) - O(1000)
96*1024 s — s
Total concurrency 597 M <,‘____ - O(billion) O(1,000)
MTTT 4 days < O(<1 day) _ ~ -o(0) >

Prof. Jack Dongarra, ScalA12, SLC, USA

B DUNCTI CUITIPULUIITY
w Center
Centro Nacional de Supercomputacion
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Flynn's Taxonomy

e« SISD - Single Instruction/ Single Data Stream

e«  SIMD - Single Instruction/Multip
« MISD - Multiple Instruction/Sing
«  MIMD - Multiple Instruction/Multi

o0wn
§9EF

e Data Stream
e Data Stream
nle Data Stream




SISD - Traditional x86

CLOCK DRIVER}

INSTRUCTION
CODE ] FETCH
CACHE

BRANCH
PREDICTION
LOGIC

. CODE INSTRUCTION
TEB DECODE

e I  COMPLEX
BUS INTERFACE ; 1 INSTRUCTION
LOGIC . SUPPORT

ol SUPERSCALER
zDA“%'; INTEGER
EXECUTION

UNITS

FLOATING
«POINT. . .

IR R
- T

MP LOGIC
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MIMD - Distributed Memory vs. Shared Memory

Shared Memory

Caches Caches

CPUs CPUs
|

Network




Accelerator type architectures:

SPE

({ 8 separate
computational units

({ Data needs to be
transferred on a

PEete T

e {FS

-

special bus between
main PowerPC CPU :
and SPEs
R SPE1 SPE3 SPES
168 168 16§ 168 168, 168
j.v m My
- S| =|E =I5
:2: V\V\ S
Y = =)=
164%68 1 ! L168 163‘§r163 -‘
MIC SPEQ SPE2 SPE4 SPE6 BIF/IOIFO
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Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming

multiprocessor; SP: streaming processor; Tex: texture, ROP:



Modern Multi-Cores

4th Generation Intel® Core™ Processor Die Map
22nm Iri-Gate 3-D Transistors

J| Engine & |
& | Memory |

including
. Display, PCle [

s [
L + and DMI IOs
Shared L3 Cache** = M

-
-
-
-

Quad core die shown above Transistor count: 1.4 Billion Die size: 177mm?

** Cache is shared across all 4 cores and processor graphics
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Multi- & Many-Core Architectures

Timeline of Many-Core at Intel

EF?T%fengiugI%EﬁynOte . Teraflops Research Single-chip Cloud Aubrey Isle & Today's

@ Processor (Polaris)  Computer (Rock Creek) MIC Architecture Launch
T o T T e ki g B -

e §
iy
- B
e A, '
i e i | -
s L

2004 2005 2006 2007 2008 2009 2010 2011 2012

L 117 1T 1 | l

Intel
T;reading
Building
Blocks

intel. inside’

Power

Many-core  Many-core Tera-scale  Workloads, Universal 1 Teraflops ~ Many-core Xeon Phi enters

Technology R&D agenda Computing  simulators, Parallel SGEMMon  Applications Top500 at #150.
Strategic & BU Larrabee Research  software & Computing Larrabee Research 1st Teraflop single-
Planning Development Program insights from Research @ SC09 Community node DP LINPACK

(80+ projects) Intel Labs Centers
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Adding External Accelerators

Host [ intel' inside”

CPU g™
Xeon

‘ (lntel) inside

PCl-Express t ‘ QPI

\ Host intel‘ inside”

CPU msmma™™
Xeon

| Xeon Phi

Typical Platform consists of:
1 to 2 Intel Xeon processors (CPUs)
1 to 8 Intel Xeon Phi Coprocessors per host
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Intel" Xeon Phi™ Coprocessor Family Reference Table

GDORS Peak Me
P FormFactor, | PeakDouble | Max#of | Clock Speed Memory Me 2 MOrY | Total Cache Board Process
Thermal Precision Cores (GHz) Speeds BW ¥ I[i Y (MB) TDP (Watts)
(GT/s) (GB)
SE10P PCle Card,
rectotio) | Passively Cooled | 1073CF 61 1.1 55 352 8 305 300
PCle Card,
: 5?]_?3._‘”] No Thermal 1073GF 61 11 55 352 8 305 300
P Solution
PCle Card,
S110P | poccively Cooled | 1011 GF 60 1.053 50 320 8 30 225 22nm
PCle Ccard Actively | 53¢ 50 240 6 285 300
i ooled Disclosed
e at 3100 series
PCle Card, launch [H1 1 3}
Passively Cooled >1TF 50 240 6 285 300

PCle Card, Actively Cooled PCle Card, Passively Cooled

Notice: This document contains information on products in the design %hase of development. The information here is subject to change without notice. Do not finalize a design with this informati
ur local Intel sales office or your distributor to obtain the latest specification before placing your product order. H -
nights Corner and other code names featured are used internally within Intel to identi?y products that are in development and not yet publicly announced for release. Customers, licensees an £
pariies are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the dger.
products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
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MareNostrum |l|

IBM iDataPlex cluster with 3028 compute nodes

 Peak Performance of 1 Petaflops
o 48,448 Intel SandyBridge-EP E5-2670 cores
at 2.6 GHz
« Two 8 core CPUs per node (16 cores/node)
 94.625 TB of main memory (32 GB/node)
« 1.9 PB of disk storage
* Interconnection networks:
* Infiniband
 Gigabit Ethernet
 Operating System: Linux - SuSe Distribution
o Consisting of 36 racks
* Footprint:120m?

Completed system - 48,448 cores and predicted to be in the top 25

Barcelona

Supercomputing
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MinoTauro

NVIDIA GPU cluster with 128 Bull B505 blades

2 Intel E5649 6-Core processors at 2.53 GHz{=
per node; in total 5544 cores :

« 2 M2090 NVIDIA GPU Cards

o« 24 GB of Main memory

 Peak Performance: 185.78 TFlops

« 250 GB SSD (Solid State Disk) as local
storage

o 2 Infiniband QDR (40 Gbit each) to a non-
blocking network

 RedHat Linux

o 14 links of 10 GbitEth to connect to BSC
GPFS Storage

The Green 500 list November 2012: #36 with 1266 Mflops/Watt, 81.5 kW total Power

Barcelona
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PARALLEL SCALABLE ALGORITHMS-
PARALLELIZATION TECHNIQUES



Scalable Algorithms: Motivation/Drivers

e Bridging the Performance Gap while dealing with
Hybrid Architectures

 Increased Scalability
« Highly fault-tolerant and fault-resilient algorithms

 Need to calculate with higher precision without
restart

 Need to tackle efficiently Grand Challenges
problems




Challenges

To achieve excellent results scalability at
all levels would be required:

( Mathematical models level

(€ Algorithmic level
({ Systems level

Barcelona
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Parallel Algorithms and Concurrency

({ Parallel Algorithms
— Tasks and Decomposition
— Processes and Mapping
— Processes Versus Processors

({ Decomposition Technigues
— Recursive Decomposition
— Recursive Decomposition
— Exploratory Decomposition
— Hybrid Decomposition
({ Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions.

Barcelona
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({ Mapping Techniques for Load Balancing
(€ Methods for Minimizing Interaction Overheads
({ Parallel Algorithm Design Models




Decomposition, Tasks, and Dependency Graphs

({ The first step in developing a parallel algorithm is to
decompose the problem into tasks that can be executed
concurrently

(€ A given problem may be decomposed into tasks in many
different ways.

({ Tasks may be of same, or different sizes.

(€ A decomposition can be illustrated in the form of a
directed graph with nodes corresponding to tasks and
edges indicating that the result of one task is required for
processing the next. Such a graph is called a task
dependency graph.




Multiplying a Dense Matrix with a Vector

A b y

01 n
Task 1 ] ]
2 || |
n-1 : :
Task n [ | L

Computation of each element of output vector y is independent of other elements. Based
on this, a dense matrix-vector product can be decomposed into n tasks. The figure
highlights the portion of the matrix and vector accessed by Task 1.

Observations: While tasks share data (namely, the vector b ), they do not have any control
dependencies - i.e., no task needs to wait for the (partial) completion of any other. All
tasks are of the same size in terms of number of operations. Is this the maximum number
of tasks we could decompose this problem into?
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Granularity of Task Decompositions

(€ The number of tasks into which a problem is
decomposed determines its granularity.

({ Decomposition into a large number of tasks results in
fine-grained decomposition and that into a small number

of tasks results in a coarse grained decomposition.

A b y
01 n

Task 1

Task 2

Task 3

Task 4

A coarse grained version of the dense matrix-vector product
example. Each task in this example corresponds to the
computation of p=3 elements of the result vector.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion




Degree of Concurrency

(

(

(

The number of tasks that can be executed in parallel is the
degree of concurrency of a decomposition.

Since the number of tasks that can be executed in parallel
may change over program execution, the maximum degree of
concurrency is the maximum number of such tasks at any
point during execution. What is the maximum degree of
concurrency of the database query examples?

The average degree of concurrency is the average number of
tasks that can be processed in parallel over the execution of
the program. Assuming that each tasks in the database
example takes identical processing time, what is the average
degree of concurrency in each decomposition?

The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.



Limits on Parallel Performance

(€ It would appear that the parallel time can be made
arbitrarily small by making the decomposition finer in
granularity.

(€ There is an inherent bound on how fine the granularity of
a computation can be. For example, in the case of
multiplying a dense matrix with a vector, there can be no
more than (n2) concurrent tasks.

(€ Concurrent tasks may also have to exchange data with
other tasks. This results in communication overhead. The
tradeoff between the granularity of a decomposition and
associated overheads often determines performance
bounds.




Processes and Mapping

({ In general, the number of tasks in a decomposition
exceeds the number of processing elements available.

({ For this reason, a parallel algorithm must also provide a
mapping of tasks to processes.




Processes and Mapping

({ Appropriate mapping of tasks to processes is critical to
the parallel performance of an algorithm.

({ Mappings are determined by both the task dependency
and task interaction graphs.

({ Task dependency graphs can be used to ensure that
work is equally spread across all processes at any point
(minimum idling and optimal load balance).

({ Task interaction graphs can be used to make sure that
processes need minimum interaction with other
processes (mMinimum communication).




Processes and Mapping

An appropriate mapping must minimize parallel execution
time by:

( Mapping independent tasks to different processes.

( Assigning tasks on critical path to processes as soon as
they become available.

(€ Minimizing interaction between processes by mapping
tasks with dense interactions to the same process.

Note: These criteria often conflict with each other. For
example, a decomposition Into one task (or no
decomposition at all) minimizes interaction but does not
result in a speedup at all!




Decomposition Techniques

So how does one decompose a task into various
subtasks?

While there is no single recipe that works for all
problems, we present a set of commonly used
technigues that apply to broad classes of problems.
These include:

recursive decomposition
data decomposition
exploratory decomposition
hybrid decomposition




Data Decomposition: Example

Consider the problem of multiplying two n x n matrices A and B
to yield matrix C. The output matrix C can be partitioned into
four tasks as follows;

Al,l A1,2 Bl,l Bl,Z R Cl,l 01,2
AZ,I AQ,Z szl Bzgz 02,1 02,2
TaSk 1: Cl,l — Al,lBl,l _|_ A]_,QBQ:]_
Task 2:
01:2 — AlalBlaz + Aliszﬂz
Task 3:
02:1 — A2=1B1,1 + A2,2B2,1
Task 4:

Coo = A21B12+ Az 2Ba 2
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Data Decomposition: Example

A partitioning of output data does not result in a unigue
decomposition into tasks. For example, for the same problem
as in previous slide, with identical output data distribution, we
can derive the following two (different) decompositions:

Decomposition | Decomposition Il

Task1: C;;,=A; By, Task1: C,, =A;; By,
Task2: C;;=C;;+A;,B,, Task2: C;;,=Cy; +A;,B,,
Task3: C;,=A; B, Task3: C,,=A;,B,,
Task4: C;,=C;,+A;,B,, Task4: C,,=C,,+A;; B,
Task5: C,;, =A, By, Task5: C,; =A,,B,,

Task 6: C,;=C,; +A,,B,, Task6: C,;, =C,,; +A,,; B,
Task7: C,,=A,, B, Task 7: C,,=A,, B,

Task 8: C,,=C,,+A,,B,, Task 8: C,,=C,,+A,,B,,
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Intermediate Data Partitioning

(€ Computation can often be viewed as a sequence of
transformation from the input to the output data.

({ In these cases, it is often beneficial to use one of the
Intermediate stages as a basis for decomposition.




Intermediate Data Partitioning: Example

Let us revisit the example of dense matrix multiplication. We first show how
we can visualize this computation in terms of intermediate matrices D.

A1 T1 =y - g
L1 B11 | B2 Diit | Dria

Axq
2:1 : D1,2,1 Dl ?2’2

_|_

A )
1.2 Doia | Boip

o — — -

A

2,2, B 2.1 B;Z},Z Dori1 | Dosn
Cr,1] C1,2
Co1| C22
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Intermediate Data Partitioning

A decomposition of intermediate data structure leads to the

following decomposition into 8 + 4 tasks:

( Aqq
As 4

Stage |
Aq 5 ) ( B
Aso )\ Baj

Stage Il

( Dy 1,1 D1,1,2 ) 4 ( D2,1,2 ) . ( Ci1 01,2
Dn 2,2 D1,2,2 D2,2,2 C'2,1 02,2
Task01: D,,,=A; B, Task 02: D,,,=A;,B,,
Task 03: D;;,=A;,B,, Task 04: D,,,=A;,B,,
Task 05: D, ,,=A,,B,, Task 06: D,,,=A,,B,,
Task 07: D;,,=A,,B,, Task 08: D,,,=A,,B,,
Task09: C;;=D;,;,+D,q, Task 10: C;,=D;,,+ D5,
Task 11: C,,=D;,,+ D5, Task 12: C, ,=D;,,+D,5,
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Exploratory Decomposition

(€ In many cases, the decomposition of the problem goes
hand-in-hand with its execution.

({ These problems typically involve the exploration (search)
of a state space of solutions.

(€ Problems in this class include a variety of discrete
optimization problems (0/1 integer programmin, etc.),
theorem proving, game playing, etc.




Speculative Decomposition

(€ In some applications, dependencies between tasks are not
known a-priori.

(€ For such applications, it is impossible to identify independent
tasks.

({ There are generally two approaches to dealing with such
applications: conservative approaches, which identify
Independent tasks only when they are guaranteed to not have
dependencies, and, optimistic approaches, which schedule
tasks even when they may potentially be erroneous.

(€ Conservative approaches may yield little concurrency and
optimistic approaches may require roll-back mechanism in the
case of an error.




Characteristics of Tasks

Once a problem has been decomposed into independent
tasks, the characteristics of these tasks critically impact
choice and performance of parallel algorithms. Relevant
task characteristics include:

({ Task generation.
({ Task sizes.
({ Size of data associated with tasks.




Task Generation

(( Static task generation: Concurrent tasks can be identified
a-priori ( matrix operations).
(€ Dynamic task generation (generated during computation)




({ Task sizes may be uniform (i.e., all tasks are the same
size) or non-uniform.

(€ Non-uniform task sizes may be such that they can be
determined (or estimated) a-priori or not.

({ Examples in this class include discrete optimization

problems, in which it is difficult to estimate the effective
size of a state space.




Size of Data Associated with Tasks

({ The size of data associated with a task may be small or
large when viewed In the context of the size of the task.

(€ A small context of a task implies that an algorithm can
easily communicate this task to other processes
dynamically.

( A large context ties the task to a process, or alternately,
an algorithm may attempt to reconstruct the context at
another processes as opposed to communicating the
context of the task (e.g., 0/1 integer programming).




Characteristics of Task Interactions

({ Tasks may communicate with each other in various ways.
The associated dichotomy is:

({ Static interactions: The tasks and their interactions are
known a-priori. These are relatively simpler to code into
programs.

(€ Dynamic Interactions: The timing or interacting tasks
cannot be determined a-priori. These interactions are
harder to code, especially, as we shall see, using
message passing APIs.




Characteristics of Task Interactions

({ Regular interactions: There is a definite pattern (in the
graph sense) to the interactions. These patterns can be
exploited for efficient implementation.

(€ Irreqular interactions: Interactions lack well-defined
topologies.




Characteristics of Task Interactions

({ Interactions may be read-only or read-write.

(C In read-only interactions, tasks just read data items
associated with other tasks.

(€ In read-write interactions tasks read, as well as modify
data items associated with other tasks.

(C In general, read-write interactions are harder to code,
since they require additional synchronization primitives.




Characteristics of Task Interactions

({ Interactions may be one-way or two-way.

({ A one-way interaction can be initiated and accomplished
by one of the two interacting tasks.

( Atwo-way interaction requires participation from both
tasks involved in an interaction.

(€ One way Iinteractions are somewhat harder to code In
message passing APIs.




Mapping Technigues

(€ Once a problem has been decomposed into concurrent
tasks, these must be mapped to processes (that can be
executed on a parallel platform).

(€ Mappings must minimize overheads.
(€ Primary overheads are communication and idling.

(€ Minimizing these overheads often represents
contradicting objectives.

( Assigning all work to one processor trivially minimizes
communication at the expense of significant idling.




Mapping Technigues for Minimum |dling

(

(

Mapping technigues can be static or dynamic.

Static Mapping: Tasks are mapped to processes a-priori. For
this to work, we must have a good estimate of the size of each
task. Even in these cases, the problem may be NP complete.

Dynamic Mapping: Tasks are mapped to processes at runtime.
This may be because the tasks are generated at runtime, or
that their sizes are not known.

Other factors that determine the choice of techniques include
the size of data associated with a task and the nature of
underlying domain.



Schemes for Static Mapping

(€ Mappings based on data partitioning.

(€ Mappings based on task graph partitioning — functional
decomposition

(€ Hybrid mappings.




Block Array Distribution Schemes

Block distribution schemes can be generalized to higher
dimensions as well.
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Cyclic and Block Cyclic Distributions

(€ If the amount of computation associated with data items
varies, a block decomposition may lead to significant
load imbalances.

( A simple example of this is in LU decomposition (or
Gaussian Elimination) of dense matrices.




Block-Cyclic Distribution

 Acyclic distribution is a special case in which block size is one.

 Ablock distribution is a special case in which block size is n/p
where n is the dimension of the matrix and p is the number of

Processes.
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Mappings Based on Task Partitioning

(( Partitioning a given task-dependency graph across
processes.

( Determining an optimal mapping for a general task-
dependency graph is an NP-complete problem.

({ Excellent heuristics exist for structured graphs.




Hierarchical Mappings

({ Sometimes a single mapping technigue is inadequate.

( For example, the task mapping of the binary tree
(quicksort) cannot use a large number of processors.

({ For this reason, task mapping can be used at the top
level and data partitioning within each level.




Minimizing Interaction Overheads

(¢

(¢

(¢

(¢

Maximize data locality: Where possible, reuse
Intermediate data. Restructure computation so that data
can be reused in smaller time windows.

Minimize volume of data exchange: There is a cost
associated with each word that is communicated. For this
reason, we must minimize the volume of data
communicated.

Minimize frequency of interactions: There is a startup
cost associated with each interaction. Therefore, try to
merge multiple interactions to one, where possible.

Minimize contention and hot-spots: Use decentralized
technigues, replicate data where necessary.




Minimizing Interaction Overheads (continued)

(€ Overlapping computations with interactions: Use non-
blocking communications, multithreading, and
prefetching to hide latencies.

({ Replicating data or computations.

(€ Using group communications instead of point-to-point
primitives.

(€ Overlap interactions with other interactions.




Parallel Algorithm Models

(€ An algorithm model is a way of structuring a parallel algorithm by
selecting a decomposition and mapping technique and applying the
appropriate strategy to minimize interactions.

({ Data Parallel Model (Data Decomposition): Tasks are statically (or
semi-statically) mapped to processes and each task performs similar
operations on different data.

({ Task Graph Model (Functional Decomposition): Starting from a task
dependency graph, the interrelationships among the tasks are
utilized to promote locality or to reduce interaction costs.
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Parallel Algorithm Models (cont.)

(€ SPMD - Single Program Multiple Data model
(€ MPMD — Multiple Programs Multiple Data model

({ Master-Slave Model: One or more processes generate
work and allocate it to worker processes. This allocation
may be static or dynamic.

({ Pipeline / Producer-Consumer Model: A stream of data is
passed through a succession of processes, each of
which perform some task on it.

(€ Hybrid Models: A hybrid model may be composed either
of multiple models applied hierarchically or multiple
models applied sequentially to different phases of a
parallel algorithm.




Parallel Algorithms Design

(( Start from an existing sequential algorithm and design
new parallel one.

(( Start from existing parallel algorithms and improve it.
(€ Design completely new parallel algorithm.




Parallel Algorithms Design - Summary

({ Choose the Initial decomposition technigue depending
on the given problem.

({ Replicate the data to minimize the communication if
necessary

(( Define initial task sizes.
( Map initial parallel algorithm onto parallel architecture.

({ Calibrate the algorithm by optimizing the task size and
minimizing the communication.

(C Arrive iteratively into the refined parallel algorithm.

Remember, the parallel algorithm has to be much faster
than the sequential one!
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