
www.bsc.es

Parallel Scalable Algorithms

Vassil Alexandrov, ICREA - Barcelona
Supercomputing Center, Spain

BSC-CNS

Barcelona Supercomputing Center – Centro Nacional de Supercomputación
(BSC-CNS) is the Spanish National Supercomputing Center.

The BSC mission:

– To investigate, develop and manage technology to facilitate the advancement of
science.

The BSC objectives:

– To perform R&D in Computer Sciences and e-Sciences
– To provide Supercomputing support to external research.

BSC is a consortium that includes:

– the Spanish Government – 51%
– the Catalan Government – 37%
– the Technical University of Catalonia – 12%

3

Unique role as HPC provider and R&D Center
Leading Expertise in Computer, Life, Earth & Physical
Sciences
Internally developed technologies
International prestige
Severo Ochoa recognition
Link to large Spanish industries
Multicultural and multidisciplinary young and motivated
team
Training skills
Location

BSC profile in Education and Training

4

Professional Training

Awarded Advanced Training Centre by PRACE
– 12 events per academic year
– Core, Specialised, Scientific Community specific and Industry

focused courses

BSC leads the Spanish SC Network training through
RES
– Workshops, tutorials and lectures

Severo Ochoa Research Seminar Lectures
– Monthly event
– BSC researchers and invited speakers
– Topics covering the research from all 4 departments

Severo Ochoa Doctoral Symposium

Focus on the Existing Skills Gap Relevant to HPC

Computational Scientists (Scientists with HPC
capabilities and multidisciplinary skills)

Programmers for heterogeneous systems

Parallel programmers

Algorithm developers for computational science

HPC systems administration

Managers with expertise in Computational Science

PRACE Research Infrastructure
Establishment of the legal framework
– PRACE AISBL created with seat in Brussels in April

(Association Internationale Sans But Lucratif)
– 24 members representing 20 European countries

• Hosting members: France, Germany, Italy, Spain
– Inaugurated in Barcelona on June 9, 2010

Funding secured for 2010 - 2015
– 400 Million € from France (GENCI), Germany (GCS),

Italy (CINECA), Spain (BSC)
Provided as Tier-0 services on TCO basis

– 70+ Million € from EC FP7 for preparatory and implementation
Grants INFSO-RI-211528 and 261557
Complemented by ~ 60 Million € from PRACE members

7

http://www.flaggezeigen.de/catalog/product_info.php?products_id=848&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=469&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=474&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=476&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=443&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=527&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=529&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=531&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=550&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=553&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=533&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=565&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=921&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=544&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=568&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=526&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=469&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=572&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=566&osCsid=419ba85839d98946a8c35337d98692f3
http://www.flaggezeigen.de/catalog/product_info.php?products_id=558&osCsid=419ba85839d98946a8c35337d98692f3

PRACE model of professional training (1/2)

Centres of Excellence in Professional Training:
– Barcelona Supercomputing Centre (Spain),

– CINECA - Consorzio Interuniversitario (Italy),

– CSC - IT Centre for Science Ltd (Finland),

– EPCC at the University of Edinburgh (UK),

– Gauss Centre for Supercomputing (Germany)

– Maison de la Simulation (France)

PRACE model of professional training (2/2)

Common Curricula Paths with Localized Syllabus

Professional Training Courses at BSC (2013-14)

Code Course Title Level / days Dates

BSC10 Parallel Programming Workshop L1 -1; L2 - 4 14 -18.10. 2013

BSC09 Introduction to simulation environment for Earth Sciences C/C- 2 12 -13.12. 2013

BSC11i System Administration on a Petaflop System, MareNostrum III L3 - 2 27, 28.01.2014

BSC13i 13th VI - HPC Tuning Workshop L2/3 Feb 2014

BSC14 Programming Distributed Computing Platforms with COMPSs L2/3 Feb 2014

BSC07 Engineering simulation tools: ALYA, FALL3D & PANDORA C/C - 3 05 -07.02. 2014

BSC08 Simulation environment for Life Sciences C/C - 2 13 -14.03. 2014

BSC06 Systems Workshop: Programming MareNostrum III L2 - 2 10 -11.04. 2014

BSC01 Performance Analysis and Tools L2 -1; L3 - 1 12 -13.05. 2014

BSC02 Heterogeneous Programming on GPUs with MPI + OmpSs L2 -1; L3 - 1 14 -15.05. 2014

BSC03 Programming ARM based prototypes L3 - 1 16.05. 2014

BSC04 Introduction to CUDA Programming (with CCOE) L2 - 5 02 -06.05. 2014

BSC12i Alya System as a Computational Mechanics Environment C/C - 2 June 2014

BSC05 PUMPS Summer School (with CCOE) L2 -1; L3 - 4 July 2014

THE COURSE PROGRAMME

Lecture Plan:

Day 1
Session 1 / 10:00 am – 1:00 pm
1. Introduction to parallel architectures, parallel algorithms design and
performance metrics.
2. Introduction to the MPI programming model
3. Practical: How to compile and run MPI applications
Session 2 / 2:00pm – 5:00 pm
1. Introduction to Paraver tool: tool to analyze and understand
performance
2. Practical: Trace generation and trace analysis

Lecture Plan:

Day 2
Session 1 / 10:00 am - 1:00 pm
1. Tareador: understanding and predicting the potential of task
decomposition strategies
2. MPI: Point-to-point communication, collective communication
3. Practical: Simple matrix computations
Session 2 / 2:00 pm - 5:00 pm
1. MPI: Blocking and non-blocking communications
2. MPI: Communicators, Topologies
3. Practical: Heat equation example

Lecture Plan:

Day 3
Session 1 / 10:00 am - 1:00 pm
1. Dimemas: Scalability simulation for MPI applications
2. Practical: Scalability simulations using Dimemas
Session 2 / 2:00 pm - 5:00 pm
1. xSim: Online scalability simulations for MPI applications
2. Practical: Scalability simulations using xSim
3. Additional MPI features: Error handling, parallel libraries, I/O and
fault tolerance

Lecture Plan:

Day 4
Session 1 / 10:00am – 1:00 pm
1. Shared-memory programming models, OpenMP fundamentals
2. Parallel regions and work sharing constructs
3. Synchronization mechanisms in OpenMP
4. Practical: heat diffusion in OpenMP
Session 2 / 2:00pm – 5:00 pm
1. Programming using a hybrid MPI/OpenMP approach
2. Practical: heat diffusion in hybrid MPI/OpenMP

Lecture Plan:

Day 5
Session 1 / 10:00 am – 1:00 pm
1. Tasking in OpenMP 3.0 and 4.0
2. Introduction to the OmpSs programming model
3. Practical: heat equation example and divide-and-conquer
Session 2 / 2:00pm – 5:00 pm
1. Programming using a hybrid MPI/OmpSs approach
2. Practical: heat equation example and divide-and-conquer

END of COURSE

1st Lecture Outline:

• Introduction
• Computer Architectures Overview
• Parallel Algorithms and Parallelisation

Techniques
• Performance Evaluation and Performance

Metrics

INTRODUCTION

Projected Performance Development

Road to Exascale

Prof. Jack Dongarra, ScalA12, SLC, USA

COMPUTER ARCHITECTURES

Flynn’s Taxonomy

• SISD – Single Instruction/ Single Data Stream
• SIMD – Single Instruction/Multiple Data Stream
• MISD - Multiple Instruction/Single Data Stream
• MIMD - Multiple Instruction/Multiple Data Stream

SISD - Traditional x86

MIMD - Distributed Memory vs. Shared Memory

Accelerator type architectures: IBM Cell architechture

8 separate
computational units
SPE
Data needs to be
transferred on a
special bus between
main PowerPC CPU
and SPEs

GPU Accelerators

Modern Multi-Cores

Multi- & Many-Core Architectures

Adding External Accelerators

BSC SUPERCOMPUTERS

34

MareNostrum III

IBM iDataPlex cluster with 3028 compute nodes

• Peak Performance of 1 Petaflops
• 48,448 Intel SandyBridge-EP E5-2670 cores

at 2.6 GHz
• Two 8 core CPUs per node (16 cores/node)
• 94.625 TB of main memory (32 GB/node)
• 1.9 PB of disk storage
• Interconnection networks:

• Infiniband
• Gigabit Ethernet

• Operating System: Linux - SuSe Distribution
• Consisting of 36 racks
• Footprint:120m2

Completed system - 48,448 cores and predicted to be in the top 25

35

MinoTauro

NVIDIA GPU cluster with 128 Bull B505 blades

• 2 Intel E5649 6-Core processors at 2.53 GHz
per node; in total 5544 cores

• 2 M2090 NVIDIA GPU Cards
• 24 GB of Main memory
• Peak Performance: 185.78 TFlops
• 250 GB SSD (Solid State Disk) as local

storage
• 2 Infiniband QDR (40 Gbit each) to a non-

blocking network
• RedHat Linux
• 14 links of 10 GbitEth to connect to BSC

GPFS Storage

The Green 500 list November 2012: #36 with 1266 Mflops/Watt, 81.5 kW total Power

PARALLEL SCALABLE ALGORITHMS-
PARALLELIZATION TECHNIQUES

Scalable Algorithms: Motivation/Drivers

• Bridging the Performance Gap while dealing with
Hybrid Architectures

• Increased Scalability
• Highly fault-tolerant and fault-resilient algorithms
• Need to calculate with higher precision without

restart
• Need to tackle efficiently Grand Challenges

problems

Challenges

 To achieve excellent results scalability at
all levels would be required:

Mathematical models level
Algorithmic level
Systems level

Parallel Algorithms and Concurrency

Parallel Algorithms
– Tasks and Decomposition
– Processes and Mapping
– Processes Versus Processors

Decomposition Techniques
– Recursive Decomposition
– Recursive Decomposition
– Exploratory Decomposition
– Hybrid Decomposition

Characteristics of Tasks and Interactions
– Task Generation, Granularity, and Context
– Characteristics of Task Interactions.

Mapping

Mapping Techniques for Load Balancing
Methods for Minimizing Interaction Overheads
Parallel Algorithm Design Models

Decomposition, Tasks, and Dependency Graphs

The first step in developing a parallel algorithm is to
decompose the problem into tasks that can be executed
concurrently
A given problem may be decomposed into tasks in many
different ways.
Tasks may be of same, or different sizes.
A decomposition can be illustrated in the form of a
directed graph with nodes corresponding to tasks and
edges indicating that the result of one task is required for
processing the next. Such a graph is called a task
dependency graph.

Multiplying a Dense Matrix with a Vector

Computation of each element of output vector y is independent of other elements. Based
on this, a dense matrix-vector product can be decomposed into n tasks. The figure

highlights the portion of the matrix and vector accessed by Task 1.

Observations: While tasks share data (namely, the vector b), they do not have any control
dependencies - i.e., no task needs to wait for the (partial) completion of any other. All
tasks are of the same size in terms of number of operations. Is this the maximum number
of tasks we could decompose this problem into?

Granularity of Task Decompositions

The number of tasks into which a problem is
decomposed determines its granularity.
Decomposition into a large number of tasks results in
fine-grained decomposition and that into a small number
of tasks results in a coarse grained decomposition.

A coarse grained version of the dense matrix-vector product
example. Each task in this example corresponds to the
computation of p=3 elements of the result vector.

Degree of Concurrency

The number of tasks that can be executed in parallel is the
degree of concurrency of a decomposition.
Since the number of tasks that can be executed in parallel
may change over program execution, the maximum degree of
concurrency is the maximum number of such tasks at any
point during execution. What is the maximum degree of
concurrency of the database query examples?
The average degree of concurrency is the average number of
tasks that can be processed in parallel over the execution of
the program. Assuming that each tasks in the database
example takes identical processing time, what is the average
degree of concurrency in each decomposition?
The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.

Limits on Parallel Performance

It would appear that the parallel time can be made
arbitrarily small by making the decomposition finer in
granularity.
There is an inherent bound on how fine the granularity of
a computation can be. For example, in the case of
multiplying a dense matrix with a vector, there can be no
more than (n2) concurrent tasks.
Concurrent tasks may also have to exchange data with
other tasks. This results in communication overhead. The
tradeoff between the granularity of a decomposition and
associated overheads often determines performance
bounds.

Processes and Mapping

In general, the number of tasks in a decomposition
exceeds the number of processing elements available.

For this reason, a parallel algorithm must also provide a
mapping of tasks to processes.

Processes and Mapping

Appropriate mapping of tasks to processes is critical to
the parallel performance of an algorithm.
Mappings are determined by both the task dependency
and task interaction graphs.
Task dependency graphs can be used to ensure that
work is equally spread across all processes at any point
(minimum idling and optimal load balance).
Task interaction graphs can be used to make sure that
processes need minimum interaction with other
processes (minimum communication).

Processes and Mapping

An appropriate mapping must minimize parallel execution
time by:

Mapping independent tasks to different processes.
Assigning tasks on critical path to processes as soon as
they become available.
Minimizing interaction between processes by mapping
tasks with dense interactions to the same process.

 Note: These criteria often conflict with each other. For
example, a decomposition into one task (or no
decomposition at all) minimizes interaction but does not
result in a speedup at all!

Decomposition Techniques

 So how does one decompose a task into various
subtasks?

 While there is no single recipe that works for all
problems, we present a set of commonly used
techniques that apply to broad classes of problems.
These include:

• recursive decomposition
• data decomposition
• exploratory decomposition
• hybrid decomposition

Data Decomposition: Example

 Consider the problem of multiplying two n x n matrices A and B
to yield matrix C. The output matrix C can be partitioned into
four tasks as follows:

Task 1:

Task 2:

Task 3:

Task 4:

Data Decomposition: Example
 A partitioning of output data does not result in a unique

decomposition into tasks. For example, for the same problem
as in previous slide, with identical output data distribution, we
can derive the following two (different) decompositions:

Decomposition I Decomposition II

Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,1 B1,2

Task 4: C1,2 = C1,2 + A1,2 B2,2

Task 5: C2,1 = A2,1 B1,1

Task 6: C2,1 = C2,1 + A2,2 B2,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2

Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,2 B2,2

Task 4: C1,2 = C1,2 + A1,1 B1,2

Task 5: C2,1 = A2,2 B2,1

Task 6: C2,1 = C2,1 + A2,1 B1,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2

Intermediate Data Partitioning

Computation can often be viewed as a sequence of
transformation from the input to the output data.
In these cases, it is often beneficial to use one of the
intermediate stages as a basis for decomposition.

Intermediate Data Partitioning: Example

 Let us revisit the example of dense matrix multiplication. We first show how
we can visualize this computation in terms of intermediate matrices D.

Intermediate Data Partitioning
 A decomposition of intermediate data structure leads to the

following decomposition into 8 + 4 tasks:
 Stage I

Stage II

Task 01: D1,1,1= A1,1 B1,1 Task 02: D2,1,1= A1,2 B2,1

Task 03: D1,1,2= A1,1 B1,2 Task 04: D2,1,2= A1,2 B2,2

Task 05: D1,2,1= A2,1 B1,1 Task 06: D2,2,1= A2,2 B2,1

Task 07: D1,2,2= A2,1 B1,2 Task 08: D2,2,2= A2,2 B2,2

Task 09: C1,1 = D1,1,1 + D2,1,1 Task 10: C1,2 = D1,1,2 + D2,1,2

Task 11: C2,1 = D1,2,1 + D2,2,1 Task 12: C2,,2 = D1,2,2 + D2,2,2

Exploratory Decomposition

In many cases, the decomposition of the problem goes
hand-in-hand with its execution.
These problems typically involve the exploration (search)
of a state space of solutions.
Problems in this class include a variety of discrete
optimization problems (0/1 integer programmin, etc.),
theorem proving, game playing, etc.

Speculative Decomposition

In some applications, dependencies between tasks are not
known a-priori.
For such applications, it is impossible to identify independent
tasks.
There are generally two approaches to dealing with such
applications: conservative approaches, which identify
independent tasks only when they are guaranteed to not have
dependencies, and, optimistic approaches, which schedule
tasks even when they may potentially be erroneous.
Conservative approaches may yield little concurrency and
optimistic approaches may require roll-back mechanism in the
case of an error.

Characteristics of Tasks

 Once a problem has been decomposed into independent
tasks, the characteristics of these tasks critically impact
choice and performance of parallel algorithms. Relevant
task characteristics include:
Task generation.
Task sizes.
Size of data associated with tasks.

Task Generation

Static task generation: Concurrent tasks can be identified
a-priori (matrix operations).
Dynamic task generation (generated during computation)

Task Sizes

Task sizes may be uniform (i.e., all tasks are the same
size) or non-uniform.
Non-uniform task sizes may be such that they can be
determined (or estimated) a-priori or not.
Examples in this class include discrete optimization
problems, in which it is difficult to estimate the effective
size of a state space.

Size of Data Associated with Tasks

The size of data associated with a task may be small or
large when viewed in the context of the size of the task.
A small context of a task implies that an algorithm can
easily communicate this task to other processes
dynamically.
A large context ties the task to a process, or alternately,
an algorithm may attempt to reconstruct the context at
another processes as opposed to communicating the
context of the task (e.g., 0/1 integer programming).

Characteristics of Task Interactions

Tasks may communicate with each other in various ways.
The associated dichotomy is:
Static interactions: The tasks and their interactions are
known a-priori. These are relatively simpler to code into
programs.
Dynamic interactions: The timing or interacting tasks
cannot be determined a-priori. These interactions are
harder to code, especially, as we shall see, using
message passing APIs.

Characteristics of Task Interactions

Regular interactions: There is a definite pattern (in the
graph sense) to the interactions. These patterns can be
exploited for efficient implementation.
Irregular interactions: Interactions lack well-defined
topologies.

Characteristics of Task Interactions

Interactions may be read-only or read-write.
In read-only interactions, tasks just read data items
associated with other tasks.
In read-write interactions tasks read, as well as modify
data items associated with other tasks.
In general, read-write interactions are harder to code,
since they require additional synchronization primitives.

Characteristics of Task Interactions

Interactions may be one-way or two-way.
A one-way interaction can be initiated and accomplished
by one of the two interacting tasks.
A two-way interaction requires participation from both
tasks involved in an interaction.
One way interactions are somewhat harder to code in
message passing APIs.

Mapping Techniques

Once a problem has been decomposed into concurrent
tasks, these must be mapped to processes (that can be
executed on a parallel platform).
Mappings must minimize overheads.
Primary overheads are communication and idling.
Minimizing these overheads often represents
contradicting objectives.
Assigning all work to one processor trivially minimizes
communication at the expense of significant idling.

Mapping Techniques for Minimum Idling

 Mapping techniques can be static or dynamic.

Static Mapping: Tasks are mapped to processes a-priori. For
this to work, we must have a good estimate of the size of each
task. Even in these cases, the problem may be NP complete.
Dynamic Mapping: Tasks are mapped to processes at runtime.
This may be because the tasks are generated at runtime, or
that their sizes are not known.

 Other factors that determine the choice of techniques include

the size of data associated with a task and the nature of
underlying domain.

Schemes for Static Mapping

Mappings based on data partitioning.
Mappings based on task graph partitioning – functional
decomposition
Hybrid mappings.

Block Array Distribution Schemes

 Block distribution schemes can be generalized to higher
dimensions as well.

Cyclic and Block Cyclic Distributions

If the amount of computation associated with data items
varies, a block decomposition may lead to significant
load imbalances.
A simple example of this is in LU decomposition (or
Gaussian Elimination) of dense matrices.

Block-Cyclic Distribution

• A cyclic distribution is a special case in which block size is one.
• A block distribution is a special case in which block size is n/p ,

where n is the dimension of the matrix and p is the number of
processes.

Mappings Based on Task Partitioning

Partitioning a given task-dependency graph across
processes.
Determining an optimal mapping for a general task-
dependency graph is an NP-complete problem.
Excellent heuristics exist for structured graphs.

Hierarchical Mappings

Sometimes a single mapping technique is inadequate.
For example, the task mapping of the binary tree
(quicksort) cannot use a large number of processors.
For this reason, task mapping can be used at the top
level and data partitioning within each level.

Minimizing Interaction Overheads

Maximize data locality: Where possible, reuse
intermediate data. Restructure computation so that data
can be reused in smaller time windows.
Minimize volume of data exchange: There is a cost
associated with each word that is communicated. For this
reason, we must minimize the volume of data
communicated.
Minimize frequency of interactions: There is a startup
cost associated with each interaction. Therefore, try to
merge multiple interactions to one, where possible.
Minimize contention and hot-spots: Use decentralized
techniques, replicate data where necessary.

Minimizing Interaction Overheads (continued)

Overlapping computations with interactions: Use non-
blocking communications, multithreading, and
prefetching to hide latencies.
Replicating data or computations.
Using group communications instead of point-to-point
primitives.
Overlap interactions with other interactions.

Parallel Algorithm Models

An algorithm model is a way of structuring a parallel algorithm by
selecting a decomposition and mapping technique and applying the
appropriate strategy to minimize interactions.

Data Parallel Model (Data Decomposition): Tasks are statically (or
semi-statically) mapped to processes and each task performs similar
operations on different data.

Task Graph Model (Functional Decomposition): Starting from a task
dependency graph, the interrelationships among the tasks are
utilized to promote locality or to reduce interaction costs.

Parallel Algorithm Models (cont.)

SPMD – Single Program Multiple Data model
MPMD – Multiple Programs Multiple Data model
Master-Slave Model: One or more processes generate
work and allocate it to worker processes. This allocation
may be static or dynamic.
Pipeline / Producer-Consumer Model: A stream of data is
passed through a succession of processes, each of
which perform some task on it.
Hybrid Models: A hybrid model may be composed either
of multiple models applied hierarchically or multiple
models applied sequentially to different phases of a
parallel algorithm.

Parallel Algorithms Design

Start from an existing sequential algorithm and design
new parallel one.
Start from existing parallel algorithms and improve it.
Design completely new parallel algorithm.

Parallel Algorithms Design - Summary

Choose the initial decomposition technique depending
on the given problem.
Replicate the data to minimize the communication if
necessary
Define initial task sizes.
Map initial parallel algorithm onto parallel architecture.
Calibrate the algorithm by optimizing the task size and
minimizing the communication.
Arrive iteratively into the refined parallel algorithm.

Remember, the parallel algorithm has to be much faster
than the sequential one!

	Parallel Scalable Algorithms
	BSC-CNS
	Slide Number 3
	BSC profile in Education and Training
	Professional Training
	Focus on the Existing Skills Gap Relevant to HPC
	PRACE Research Infrastructure
	PRACE model of professional training (1/2)
	PRACE model of professional training (2/2)
	Professional Training Courses at BSC (2013-14)
	THE COURSE PROGRAMME
	Lecture Plan:
	Lecture Plan:
	Lecture Plan:
	Lecture Plan:
	Lecture Plan:
	1st Lecture Outline:
	INTRODUCTION
	Slide Number 19
	Slide Number 20
	Projected Performance Development
	Road to Exascale
	COMPUTER ARCHITECTURES
	Flynn’s Taxonomy
	SISD - Traditional x86
	MIMD - Distributed Memory vs. Shared Memory
	Accelerator type architectures: IBM Cell architechture
	GPU Accelerators
	Modern Multi-Cores
	Multi- & Many-Core Architectures
	Adding External Accelerators
	Slide Number 32
	BSC SUPERCOMPUTERS
	MareNostrum III
	MinoTauro
	Parallel Scalable Algorithms-�Parallelization Techniques
	Scalable Algorithms: Motivation/Drivers
	Challenges
	Parallel Algorithms and Concurrency
	Mapping
	Decomposition, Tasks, and Dependency Graphs
	Multiplying a Dense Matrix with a Vector
	Granularity of Task Decompositions
	Degree of Concurrency
	Limits on Parallel Performance
	Processes and Mapping
	Processes and Mapping
	Processes and Mapping
	Decomposition Techniques
	Data Decomposition: Example
	Data Decomposition: Example
	Intermediate Data Partitioning
	Intermediate Data Partitioning: Example
	Intermediate Data Partitioning
	Exploratory Decomposition
	Speculative Decomposition
	Characteristics of Tasks
	Task Generation
	Task Sizes
	Size of Data Associated with Tasks
	Characteristics of Task Interactions
	Characteristics of Task Interactions
	Characteristics of Task Interactions
	Characteristics of Task Interactions
	Mapping Techniques
	Mapping Techniques for Minimum Idling
	Schemes for Static Mapping
	Block Array Distribution Schemes
	Cyclic and Block Cyclic Distributions
	Block-Cyclic Distribution
	Mappings Based on Task Partitioning
	Hierarchical Mappings
	Minimizing Interaction Overheads
	Minimizing Interaction Overheads (continued)
	Parallel Algorithm Models
	Parallel Algorithm Models (cont.)
	Parallel Algorithms Design
	Parallel Algorithms Design - Summary

