.. Session 4: Parallel
I Programmingwith OpenMP

A

ﬁavier VERIE
&_\; |
Barcelona Supereomputing Center

Agenda
Agenda

10:00 - 11:00
11:00 - 11:30
11:30 - 12:00
12:00 - 12:15
12:15-13:00
13:00 - 14:00
14:00 - 14:20
14:20 - 17:00

Xavier Martorell (BSC)

OpenMP fundamentals, parallel regions
Worksharing constructs

Break

Synchronization mechanisms in OpenMP

Practical: heat diffusion

Lunch

Programming using a hybrid MP1/OpenMP approach

Practical: heat diffusion

PATC Parallel Programming Workshop November 26-30, 2012 2/91

Part |

OpenMP fundamentals, parallel regions

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 3/91

@ OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

@ Data-sharing attributes

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 4/91

OpenMP Overview

Outline

@ OpenMP Overview

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 5/91

What is OpenMP?

@ It's an API extension to the C, C++ and Fortran languages to write
parallel programs for shared memory machines
@ Current version is 3.1 (July 2011)
@ ... 4.0is open for public comments
@ Supported by most compiler vendors
@ Intel, IBM, PGI, Sun, Cray, Fuijitsu, HP, GCC...

@ Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 6/91

OpenMP Overview

A bit of history

R A R L L O
1997 '98 '99 2000 ‘02 ‘05 ‘08 11 2012

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 7/91

Advantages of OpenMP

@ Mature standard and implementations
e Standardizes practice of the last 20 years

@ Good performance and scalability
@ Portable across architectures

@ Incremental parallelization

@ Maintains sequential version

@ (mostly) High level language
e Some people may say a medium level language :-)

@ Supports both task and data parallelism
@ Communication is implicit

W

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 8/91

Disadvantages of OpenMP

Communication is implicit

Flat memory model

Incremental parallelization creates false sense of glory/failure
No support for accelerators (...yet, maybe in 4.0)

No error recovery capabilities (...yet, 4.0)

Difficult to compose

Lacks high-level algorithms and structures

Does not run on clusters

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 9/91

The OpenMP model

Outline

@ The OpenMP model

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 10/91

The OpenMP model

OpenMP at a glance

OpenMP componen

Environment
OpenMP Executable OpenMP API

[OpenMP Runtime Library -]

[OS Threading Libraries]

cPU cPU cPU cPU cPU BEED : -

Xavier Martorell (BSC) PATC Parallel Programming Workshop 2012 11/91

The OpenMP model

Execution model

Fork-join model

@ OpenMP uses a fork-join model

o The master thread spawns a team of threads that joins at the end of
the parallel region
e Threads in the same team can collaborate to do work

/@ D

Nested Parallel Reglon

rrrrrrrrrrrr | T

Parallel Region Parallel Region

\\

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 12/91

The OpenMP model

Memory model

@ OpenMP defines a relaxed memory model

e Threads can see different values for the same variable
e Memory consistency is only guaranteed at specific points
@ Luckily, the default points are usually enough

@ Variables can be shared or private to each thread

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 13/91

Writing OpenMP programs

Outline

@ Writing OpenMP programs

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 14/91

Writing OpenMP programs
OpenMP directives syntax

In Fortran

Through a specially formatted comment:
sentinel construct [clauses]

where sentinel is one of:
@ ! SOMP or CSOMP or »SOMP in fixed format

@ ! SOMP in free format)

In C/C++

Through a compiler directive:

#pragma omp construct [clauses]

v

@ OpenMP syntax is ignored if the compiler does not recogni@
OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 15/91

Writing OpenMP programs

OpenMP directives syntax

In Fortran

Through a specially formatted comment:
sentinel construct [clauses]

where sentinel is one of:
@ ! SOMP or CSOMP or »SOMP in fixed format

@ ! SOMP in free format)

In C/C++

Through a compiler directive:

#pragma omp construct [clauses]

v

@ OpenMP svntax is ianored if the compiler does not recogni@
We'll be using C/C++ syntax through this tutorial

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 15/91

Writing OpenMP programs
Headers/Macros

@ omp.h contains the API prototypes and data types definitions
@ The _OPENMP is defined by the OpenMP enabled compilers
o Allows conditional compilation of OpenMP

@ The omp_lib module contains the subroutine and function
definitions

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 16/91

Writing OpenMP programs

Structured Block

Most directives apply to a structured block:
@ Block of one or more statements
@ One entry point, one exit point
@ No branching in or out allowed

@ Terminating the program is allowed

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 17 /91

Creating Threads

Outline

@ Creating Threads

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 18/91

Creating Threads

The parallel construct

#pragma omp parallel [clauses]
structured block

where clauses can be:

@ num_threads (expression)
if (expression)
shared(var-list)«—

Coming shortly!
private(var-list)

firstprivate(var-list)
default(none|shared| private

We’'ll see it later

reduction(var-list)

Only in Fortran

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 19/91

Creating Threads

The parallel construct

Specifying the number of threads

@ The number of threads is controlled by an internal control variable
(Icv) called nthreads-var
@ When a parallel construct is found a parallel region with a
maximum of nthreads-var is created
e Parallel constructs can be nested creating nested parallelism
@ The nthreads-var can be modified through

o the omp_set_num_threads API called
e the OMP_NUM_THREADS environment variable

@ Additionally, the num_threads clause causes the implementation
to ignore the ICV and use the value of the clause for that region

)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 20/91

Creating Threads

The parallel construct

Avoiding parallel regions

@ Sometimes we only want to run in parallel under certain conditions
e E.g., enough input data, not running already in parallel, ...

@ The if clause allows to specify an expression. When evaluates to
false the parallel construct will only use 1 thread

o Note that still creates a new team and data environment

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 21/91

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

omp_set_num_threads(2);
#pragma omp parallel

#pragma omp parallel num_threads(random()%4+1) if(N>=128)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22/91

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel
An unknown number of threads here. Use OMP_NUM_THREADSJ
omp_set_num aas(zJ,;
#pragma omp parallel

#pragma omp parallel num threads(random()%4+1) if(N>=128)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22/91

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

omp_set_num_threads(2);

#pragma omp rallel
- A team of two threads here
#pragma omp parallel num threads dom()%4+1) if(N>=128)

}

November 26-30, 2012 22 /91

PATC Parallel Programming Workshop

Xavier Martorell (BSC)

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

omp_set_num_threads(2);
#pragma omp parallel

e G m()%4+1) if (N>=128)
e A team of [1..4] threads here

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22/91

Creating Threads

API calls

Other useful routines

int omp_get_num_threads() Returns the number of threads in the cur-

rent team

int omp_get_thread num() Returns the id of the thread in the current
team

int omp_get_num_procs() Returns the number of processors in the
machine

int omp_get_max_threads() Returns the maximum number of threads
that will be used in the next parallel region

double omp_get_wtime() Returns the number of seconds since an
arbitrary point in the past

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 23/91

Data-sharing attributes

Outline

@ Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 24 /91

Data-sharing attributes

Data environment

A number of clauses are related to building the data environment that
the construct will use when executing
@ shared
private
firstprivate
default
threadprivate

lastprivate

reduction

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 25/91

Data-sharing attributes
Data-sharing attributes

When a variable is marked as shared, the variable inside the
construct is the same as the one outside the construct

@ In a parallel construct this means all threads see the same
variable

@ but not necessarily the same value

@ Usually need some kind of synchronization to update them
correctly

e OpenMP has consistency points at synchronizations

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 26 /91

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel shared(X) num threads(2)

{
X++;
printf ("sd\n",x);

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 /91

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel shared(x) num_threads(2)

{
X++;

printf("sd\n",x);
: f\

printf("sd\n",x) ;<—[Prints 2 or 3 (three printfs in total))

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 /91

Data-sharing attributes
Data-sharing attributes

When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value

@ In a parallel construct this means all threads have a different
variable

@ Can be accessed without any kind of synchronization

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 28/91

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel private(X) num threads(2)

{
X++]
printf ("sd\n" ,x);

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29/91

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel private(X) num_threads(2)

{

X++;

printf("sd\n",x); <—[Can print anything (twice, same or different))

printf("sd\n",x);

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29/91

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel private(X) num_threads(2)

{
X++;
printf("sd\n",x);

}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29/91

Data-sharing attributes
Data-sharing attributes

Firstprivate

When a variable is marked as £irstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the
original value of the variable
@ In a parallel construct this means all threads have a different
variable with the same initial value

@ Can be accessed without any kind of synchronization

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 30/91

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel firstprivate(X) num_threads(2)

{
X++]
printf ("sd\n",x);

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31/91

Data-sharing attributes

Data-sharing attributes

Example
int x=1;
#pragma omp parallel firstprivate(X) num_threads(2)
{
X++;
printf("sd\n",x); Prints 2 (twice)

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31/91

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel firstprivate(X) num_threads(2)

{
X++;
printf("sd\n",x);

}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31/91

Data-sharing attributes

Data-sharing attributes

What is the default?

@ Static/global storage is shared

@ Heap-allocated storage is shared

@ Stack-allocated storage inside the construct is private
@ Others

o If there is a default clause, what the clause says

@ none means that the compiler will issue an error if the attribute is not
explicitly set by the programmer

e Otherwise, depends on the construct
@ Forthe parallel region the default is shared

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 32/91

Data-sharing attributes

Data-sharing attributes

Example
int x,y;
#pragma omp parallel private(y)
{
X =
y =
#pragma omp parallel private(X)
{
X =
y =
}
}
v

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33/91

Data-sharing attributes

Data-sharing attributes

Example
int x,y;
#pragma omp parallel private(y)
{
y = \
X =
y =
}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33/91

Data-sharing attributes

Data-sharing attributes

Example

int x,y;
#pragma omp parallel private(y)

{

X =

y =
#pragma omp parallel private(X)

{
y=(\
|

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33/91

Data-sharing attributes

Threadprivate storage

The threadprivate construct

#pragma omp threadprivate (var—list)

@ Can be applied to:

o Global variables
o Static variables
o Class-static members

@ Allows to create a per-thread copy of “global” variables

@ threadprivate storage persist across parallel regions if the
number of threads is the same

v

©

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 34 /91

Threadprivate persistence across nested regions is complex

Data-sharing attributes

Threaprivate storage

charx foo ()

{
static char buffer [BUF_SIZE];

#pragma omp threadprivate (buffer)

return buffer;

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35/91

Data-sharing attributes

Threaprivate storage

charx foo ()

{

static char buffer[BUF_SIZE]; Creates one static
#pragma omp threadprivate (buffer) copy of buffer per
thread

return buffer;

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35/91

Data-sharing attributes

Threaprivate storage

charx foo ()

{

static char buffer [BUF_SIZE]; Now foo can be called by
#pragma omp threadprivate (buffer) multiple threads at the same
time

return buffer;

}

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35/91

Data-sharing attributes

Threaprivate storage

charx foo ()

{
static char buffer [BUF_SIZE];

#pragma omp threadprivate (buffer)

return buffer - foo returns correct
} ’ address to caller

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35/91

Part Il

Worksharing constructs

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 36/91

Outline

@ The worksharing concept

@ Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 37/91

The worksharing concept

Outline

@ The worksharing concept

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 38/91

The worksharing concept

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

@ Threads cooperate to do some work

@ Better way to split work than using thread-ids
@ Lower overhead than using tasks
e But, less flexible

In OpenMP, there are four worksharing constructs:
@ single
@ loop worksharing
@ section

@ workshare

v

Restriction: worksharings cannot be nested \\ .

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 39/91

Loop worksharing

Outline

@ Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 40/ 91

Loop worksharing

Loop parallelism

The for construct

#pragma omp for [clauses]

for(init—expr ; test—expr ; inc—expr)

where clauses can be:

private

firstprivate

lastprivate (variable-1list)
reduction (operator:variable-list)
schedule (schedule-kind)

nowait
collapse (n) @

ordered

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 41/91

Loop worksharing

The for construct

The iterations of the loop(s) associated to the construct are divided
among the threads of the team
@ Loop iterations must be independent
@ Loops must follow a form that allows to compute the number of
iterations

@ Valid data types for induction variables are: integer types, pointers
and random access iterators (in C++)
e The induction variable(s) are automatically privatized

@ The default data-sharing attribute is shared

It can be merged with the parallel construct:

#pragma omp parallel for

v

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 42 /91

Loop worksharing

The for construct

void foo (int «m, int N, int M)
{
int i;
#pragma omp parallel for private(j)
for (i =0; i <N; i++)
for (j =0; j <M; j++)
mlillj] = 0;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 /91

Loop worksharing

The for construct

void foo (int «m, int N, int M)

{
"t":a'; omo oarallel forcosive NEW created threads cooperate to exe-
fgr ?mT _ %;Pi <N; i++) cute all the iterations of the loop
for (j =0; j <M; j++)
mli][j] = 0;

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43/ 91

Loop worksharing

The for construct

void foo (int «m, int N, int M)
{
int i;
#pragma omp p i i
for (i«=8+1 The i variable is automatically privatized
for (j = oy T =W TFF
} mi][j] = O;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 /91

Loop worksharing

The for construct

void foo (int xm, int N, int M)
{
int i;
#pragma omp parallel for private(j)
for (i =0; i <N: j++)
for (j<=—0s— Must be explicitly privatizedj
mEi][j] = b3

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 /91

Loop worksharing

The for construct

void foo (std::vector<int> &v)
{
#pragma omp parallel for
for (std::vector<int>::iterator it = v.begin() ;
it <v.end() ;
it ++)
xit = 0;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 /91

Loop worksharing

The for construct

void foo (std::vector<int> &v)
{ #pragma omp parallel for random access iterators
for (std::vector<int>::iterator<«d (and pointers) are valid
it < v.end() 5 types
it ++)
xit = 0;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 /91

Loop worksharing

The for construct

void foo (std::vector<int> &v)
{ #pragma omp parallel for
for (std::vector<int>::jterator it = v beain()
it < v.end()« I= cannot be used in the test expression)
it ++)
xit = 0;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 /91

Loop worksharing

Removing dependences

i =0; i <n; i++)

VLI = Each iteration x depends on the ’
X += dx;

previous one. Can'’t be parallelized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 45/ 91

Loop worksharing

Removing dependences

i =0; i <n; i++)

. . But x can be rewritten in terms of .
X = i x dx;] .
vii] = x; Now it can be parallelized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 46 /91

Loop worksharing
The lastprivate clause

When a variable is declared lastprivate, a private copy is
generated for each thread. Then the value of the variable in the last
iteration of the loop is copied back to the original variable

@ A variable can be both firstprivate and lastprivate

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012 47 /91

Loop worksharing

The reduction clause

A very common pattern is where all threads accumulate some values
into a single variable

@ E.g., n +=V[i], our heat program, ...
@ Using critical or atomic is not good enough
e Besides being error prone and cumbersome
Instead we can use the reduction clause for basic types
@ Valid operators are: +, -, *, |, ||, &, &&,*, min, max
e User-defined reductions coming soon...
@ The compiler creates a private copy that is properly initialized

@ At the end of the region, the compiler ensures that the shared
variable is properly (and safely) updated

We can also specify reduction variables in the parallel construct

v
~
Xavier Martorell (BSC)

PATC Parallel Programming Workshop November 26-30, 2012 48 /91

Loop worksharing

The reduction clause

int vector_sum (int n, int v[n])
{
int i, sum = 0;
#pragma omp parallel for reduction(+:sum)
{
for (i =0; i <n; i++)
sum += v[i];
}
return sum;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49/ 91

Loop worksharing

The reduction clause

int vector_sum (int n, int v[n])
{
int i, sum = 0O;
#pragma i .
{ Private copy initialized here to the identity value
for Tr=uorTr=< T
sym += v[ijl-
} Shared variable updated here with the partial values of each thread)
return Sorr;
}

v

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49/ 91

Loop worksharing

The schedule clause

The schedule clause determines which iterations are executed by
each thread

@ If no schedule clause is present then is implementation defined
There are several possible options as schedule:

@ STATIC

@ STATIC, chunk

@ DYNAMIC][, chunk]

@ GUIDED[, chunk]

@ AUTO

@ RUNTIME

)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 50/91

Loop worksharing
The schedule clause

Static schedule

The iteration space is broken in chunks of approximately size
N/num — threads. Then these chunks are assigned to the threads in a
Round-Robin fashion

v

Static, N schedule (Interleaved)

The iteration space is broken in chunks of size N. Then these chunks
are assigned to the threads in a Round-Robin fashion

Characteristics of static schedules
@ Low overhead

@ Good locality (usually)
@ Can have load imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 51/91

Loop worksharing
The schedule clause

Dynamic, N schedule

Threads dynamically grab chunks of N iterations until all iterations
have been executed. If no chunk is specified, N = 1.

v

Guided, N schedule
Variant of dynamic. The size of the chunks deceases as the threads
grab iterations, but it is at least of size N. If no chunk is specified,
N=1.

Characteristics of dynamic schedules
@ Higher overhead
@ Not very good locality (usually)
@ Can solve imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 52 /91

Loop worksharing

The schedule clause

Auto schedule
In this case, the implementation is allowed to do whatever it wishes
@ Do not expect much of it as of now

v

Runtime schedule

The decision is delayed until the program is run through the
sched-nvar ICV. It can be set with:

@ The OMP_SCHEDULE environment variable
@ The omp_set_schedule() API call

v

©

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 53 /91

Loop worksharing
The nowait clause

When a worksharing has a nowait clause then the implicit barrier
at the end of the loop is removed

@ This allows to overlap the execution of non-dependent
loops/tasks/worksharings

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 54 /91

Loop worksharing

The nowait clause

. First and second loop are independent,
#pragma omp for nowait
++) SO wecan overlap them

for (i =0; i <n ; i
v[ii] = 0;

#pragma omp for:

for (i = 0; i <n ; i++)
a[i] = 0;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

55/91

Loop worksharing

The nowait clause

#pragma omp for nowait
for (i =0; i <n ; i++) ‘Side note: you would better fuse ’

v[i] = 0; the loops in this case
#pragma omp for
for (i = 0; i <n ; i++)

a[i] = 0;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 55/91

Loop worksharing

The nowait clause

#pragma omp for nowait

for (i =0; i <n ; i++)
v[ii] = 0; /

#pragma omp for:

for (i = 0; i <n ; i++)
ali] = v[il]xv[il;

First and second loops are dependent!
No guarantees that the previous iteration
is finished

Xavier Martorell (BSC)

PATC Parallel Programming Workshop

November 26-30, 2012

56 /91

Loop worksharing

The nowait clause

Exception: static schedules

If the two (or more) loops have the same static schedule and all
have the same number of iterations

#pragma omp for schedule(static, M) nowait
for (i =0; i <n ; i++)
v[i] = 0;
#pragma omp for schedule(static, M)
for (i =0; i <n ; i++)
ali] = v[ilxv[il;

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 57 /91

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops
@ Loops must be perfectly nested
@ The nest must traverse a rectangular iteration space

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 /91

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops
@ Loops must be perfectly nested
@ The nest must traverse a rectangular iteration space

#pragma omp for collapse(2) i and j loops are folded and itera-
for (i =0; i <N; i++) tions distributed among all threads.
for ((j =05] <M j++) Both i and j are privatized

foo (i,j);

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 /91

Coffee time! :-)

Xavier Martorell (BSC) allel Programming Workshop 2012 59 /91

Part

Basic Synchronizations

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 60 /91

Outline

@ Thread barriers

@ Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 61/91

Why synchronization?

Mechanisms

Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

barrier
critical
atomic
taskwait
ordered

locks

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

62/91

Thread barriers

Outline

@ Thread barriers

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 63 /91

Thread barriers

Thread Barrier

The barrier construct

#pragma omp barrier

@ Threads cannot proceed past a barrier point until all threads reach
the barrier AND all previously generated work is completed

@ Some constructs have an implicit barrier at the end
o E.g., the parallel construct

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 64 /91

Thread barriers

Barrier

Example

#pragma omp parallel

foo ();

#pragma omp barrier
bar ();

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65/91

Thread barriers

Barrier

Example

#pragma omp parallel

foo ();) Forces all foo occurrences too
#pragma omp barrier

bar () : happen before all bar occurrences
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65/91

Thread barriers

Barrier

Example

#pragma omp parallel

foo ();
#pragma omp barrier
bar ():
}<—(Implicit barrier at the end of the parallel region)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65/91

Exclusive access

Outline

@ Exclusive access

Xavier Martorell (BSC) allel Programming Workshop 2012 66 /91

Exclusive access
Exclusive access

The critical construct

#pragma omp critical [(name)]
structured block

@ Provides a region of mutual exclusion where only one thread can
be working at any given time.
@ By default all critical regions are the same, but you can provide
them with names
o Only those with the same name synchronize

v

@

67/91

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

Exclusive access

Critical construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp critical
X++;

1

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 /91

Exclusive access

Critical construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{
#pragma omp crjitical

X++; Only one thread at a time here)
}

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 /91

Exclusive access

Critical construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{
#pragma omp crjitical

X++; Only one thread at a time here)
}

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 /91

Exclusive access

Critical construct

Example

int x=1,y=0;
#pragma omp parallel num_threads(4)
{
#pragma omp critical (Xx)
X++;
#pragma omp critical (y)
y++;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69 /91

Exclusive access

Critical construct

Example

int x=1,y=0;
#pragma omp parallel num_ threads(4)

{
#pragma omp critical (X) (pifferent names: One thread can ’

#pra;;;;w update x while another updates y
y++;

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69 /91

Exclusive access
Exclusive access

The atomic construct

#pragma omp atomic
expression

@ Provides an special mechanism of mutual exclusion to do read &
update operations
@ Only supports simple read & update expressions
e E.g,x+=1,x=x-foo()
@ Only protects the read & update part
e foo() not protected

@ Usually much more efficient than a eritical construct

@ Not compatible with eritical

v

N\

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 70/91

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp atomic
X++;

1

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71/91

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp atomic
x++;<—fgnly one thread at a time updates x here)

}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71/91

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp atomic
X++;

1

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71/91

Exclusive access

Atomic construct

Example
int x=1;
#pragma omp parallel num threads(2)
{
#pragma omp critical
X++;
#pragma omp atomic
X++;
}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72/91

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num threads(2)

{

#pragma omp critical

| Different threads can update x at

X++] ' ’
#pragma WJ the same time!
X++]

}

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

72/91

Exclusive access

Atomic construct

Example
int x=1;
#pragma omp parallel num threads(2)
{
#pragma omp critical
X++;
#pragma omp atomic
X++;
} .
printf("sd\n",x); Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72/91

Part IV

Practical: OpenMP heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 73 /91

Outline

@ Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 74 /91

Heat diffusion

Outline

@ Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 75/91

Heat diffusion
Before you start

Enter the OpenMP directory to do the following exercises

@ Session4.1-exercise contains the serial version of the Heat
application

@ you can use SsGrind on heat-tareador to determine parallelism,
and observe diferences among the three algorithms

@ and then annotate the application with OpenMP

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 76 /91

Heat diffusion

Description of the Heat Diffusion app Hands-on

The file solver.c implements the computation of the Heat diffusion

@ Annotate the jacobi, redblack, and gauss functions with OpenMP
Q@ Execute the application with different numbers of processors
e compare the results

o evaluate the performance

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 77191

Break

Xavier Martorell (BSC)

PATC Parallel Programming Workshop

Bon appétit!*

*Disclaimer: actual food may differ
from the image! :-)

November 26-30, 2012

78/91

Part V

Programming using a hybrid
MPI1/OpenMP approach

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 79/91

Outline

@ MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 80 /91

MPI+OpenMP programming

Outline

@ MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 81/91

MPI+OpenMP programming

Distributed- vs Shared- Memory Programming

Distributed-memory programming

@ Separate processes

o Private variables are unaccessible from others
@ Point-to-point and collective communication

o Implicit synchronization

Shared-memory programming

@ Multiple threads share same address space
@ Explicit synchronization

v

©

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 82/91

MPI+OpenMP programming
Hybrid programming

Combining MPI+OpenMP

@ Distributed algorithms spread over nodes
@ Shared memory for computation within each node

A B
X

Yy VY Yy

RN .IP...\‘H'!'H.EP.\..

" e W GRS

Node 0 w** ode 1 *M**

:

v

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 83/91

MPI+OpenMP programming
Opportunities

When to use MPI+OpenMP

@ Starting from OpenMP and moving to clusters with MPI

@ Starting from MPI and exploiting further parallelism inside each
node

Improvements
@ OpenMP can solve MPI imbalance

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 84 /91

MPI+OpenMP programming
Alternatives

MPI + computational kernels in OpenMP

Use OpenMP directives to exploit parallelism between communication
phases

@ OpenMP parallel will end before new communication calls

MPI inside OpenMP constructs
Call MPI from within for-loops, or tasks
@ MPI needs to support multi-threaded mode

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 85/91

Compiling MPI+OpenMP

MPI compiler driver needs the proper OpenMP option
@ mpicc -openmp
@ mpicc -fopenmp

v

Also useful

@ mpicc -show <your command line options and files>

o It displays the full command line executed by mpicc to compile your
program

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 86 /91

Part VI

Practical: MP1+OpenMP heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 /91

Outline

@ MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 88 /91

MPI+OpenMP Heat diffusion

Outline

@ MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 89 /91

MPI+OpenMP Heat diffusion

Before you start

Enter the Session4.2-exercise directory to do the following exercises)

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 90 /91

MPI+OpenMP Heat diffusion

Description of the Heat Diffusion app Hands-on

The file solver.c implements the computation of the Heat diffusion
@ Use MPI to distribute the work across nodes

©Q Annotate the jacobi, redblack, and gauss functions with OpenMP
tasks

© Execute the application with different numbers of
nodes/processors, and compare the results

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 91/91

	OpenMP fundamentals, parallel regions
	OpenMP Overview
	The OpenMP model
	Writing OpenMP programs
	Creating Threads
	Data-sharing attributes

	Worksharing constructs
	The worksharing concept
	Loop worksharing

	Basic Synchronizations
	Thread barriers
	Exclusive access

	Practical: OpenMP heat diffusion
	Heat diffusion

	Programming using a hybrid MPI/OpenMP approach
	MPI+OpenMP programming

	Practical: MPI+OpenMP heat diffusion
	MPI+OpenMP Heat diffusion

