
Session 4: Parallel
Programming with OpenMP

Xavier Martorell

Barcelona Supercomputing Center

Agenda

Agenda

10:00 - 11:00 OpenMP fundamentals, parallel regions
11:00 - 11:30 Worksharing constructs
11:30 - 12:00 Break
12:00 - 12:15 Synchronization mechanisms in OpenMP
12:15 - 13:00 Practical: heat diffusion
13:00 - 14:00 Lunch
14:00 - 14:20 Programming using a hybrid MPI/OpenMP approach
14:20 - 17:00 Practical: heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 2 / 91

Part I

OpenMP fundamentals, parallel regions

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 3 / 91

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 4 / 91

OpenMP Overview

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 5 / 91

OpenMP Overview

What is OpenMP?

It’s an API extension to the C, C++ and Fortran languages to write
parallel programs for shared memory machines

Current version is 3.1 (July 2011)
... 4.0 is open for public comments

Supported by most compiler vendors
Intel, IBM, PGI, Sun, Cray, Fujitsu, HP, GCC...

Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 6 / 91

OpenMP Overview

A bit of history
O

pe
nM

P
Fo

rt
ra

n
1.

0

1997

O
pe

nM
P

C
/C

++
1.

0

’98

O
pe

nM
P

Fo
rt

ra
n

1.
1

’99

O
pe

nM
P

Fo
rt

ra
n

2.
0

2000

O
pe

nM
P

C
/C

++
2.

0

’02
O

pe
nM

P
2.

5
’05

O
pe

nM
P

3.
0

’08

O
pe

nM
P

3.
1

’11 2012

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 7 / 91

OpenMP Overview

Advantages of OpenMP

Mature standard and implementations
Standardizes practice of the last 20 years

Good performance and scalability
Portable across architectures
Incremental parallelization
Maintains sequential version
(mostly) High level language

Some people may say a medium level language :-)

Supports both task and data parallelism
Communication is implicit

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 8 / 91

OpenMP Overview

Disadvantages of OpenMP

Communication is implicit
Flat memory model
Incremental parallelization creates false sense of glory/failure
No support for accelerators (...yet, maybe in 4.0)
No error recovery capabilities (...yet, 4.0)
Difficult to compose
Lacks high-level algorithms and structures
Does not run on clusters

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 9 / 91

The OpenMP model

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 10 / 91

The OpenMP model

OpenMP at a glance

OpenMP components

CPU CPU CPU CPU CPU CPU SMP

OS Threading Libraries

OpenMP Runtime Library ICVs

OpenMP Executable

Compiler

Constructs

OpenMP API Environment
Variables

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 11 / 91

The OpenMP model

Execution model

Fork-join model
OpenMP uses a fork-join model

The master thread spawns a team of threads that joins at the end of
the parallel region
Threads in the same team can collaborate to do work

Parallel Region Parallel Region

Nested Parallel Region

Master Thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 12 / 91

The OpenMP model

Memory model

OpenMP defines a relaxed memory model
Threads can see different values for the same variable
Memory consistency is only guaranteed at specific points
Luckily, the default points are usually enough

Variables can be shared or private to each thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 13 / 91

Writing OpenMP programs

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 14 / 91

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l cons t ruc t [c lauses]

where sentinel is one of:
!$OMP or C$OMP or *$OMP in fixed format
!$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp cons t ruc t [c lauses]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 15 / 91

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l cons t ruc t [c lauses]

where sentinel is one of:
!$OMP or C$OMP or *$OMP in fixed format
!$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp cons t ruc t [c lauses]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 15 / 91

We’ll be using C/C++ syntax through this tutorial

Writing OpenMP programs

Headers/Macros

C/C++ only
omp.h contains the API prototypes and data types definitions
The _OPENMP is defined by the OpenMP enabled compilers

Allows conditional compilation of OpenMP

Fortran only
The omp_lib module contains the subroutine and function
definitions

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 16 / 91

Writing OpenMP programs

Structured Block

Definition
Most directives apply to a structured block:

Block of one or more statements
One entry point, one exit point

No branching in or out allowed

Terminating the program is allowed

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 17 / 91

Creating Threads

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 18 / 91

Creating Threads

The parallel construct

Directive

#pragma omp parallel [c lauses]
s t r u c t u r e d block

where clauses can be:
num_threads(expression)

if(expression)

shared(var-list)
private(var-list)
firstprivate(var-list)
default(none|shared| private | firstprivate)
reduction(var-list)

Coming shortly!

Only in Fortran

We’ll see it later

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 19 / 91

Creating Threads

The parallel construct

Specifying the number of threads
The number of threads is controlled by an internal control variable
(ICV) called nthreads-var
When a parallel construct is found a parallel region with a
maximum of nthreads-var is created

Parallel constructs can be nested creating nested parallelism
The nthreads-var can be modified through

the omp_set_num_threads API called
the OMP_NUM_THREADS environment variable

Additionally, the num_threads clause causes the implementation
to ignore the ICV and use the value of the clause for that region

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 20 / 91

Creating Threads

The parallel construct

Avoiding parallel regions
Sometimes we only want to run in parallel under certain conditions

E.g., enough input data, not running already in parallel, ...

The if clause allows to specify an expression. When evaluates to
false the parallel construct will only use 1 thread

Note that still creates a new team and data environment

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 21 / 91

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (N>=128)

. . .
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 91

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (N>=128)

. . .
}

An unknown number of threads here. Use OMP_NUM_THREADS

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 91

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (N>=128)

. . .
}

A team of two threads here

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 91

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (N>=128)

. . .
}

A team of [1..4] threads here

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 91

Creating Threads

API calls

Other useful routines
int omp_get_num_threads() Returns the number of threads in the cur-

rent team
int omp_get_thread_num() Returns the id of the thread in the current

team
int omp_get_num_procs() Returns the number of processors in the

machine
int omp_get_max_threads() Returns the maximum number of threads

that will be used in the next parallel region
double omp_get_wtime() Returns the number of seconds since an

arbitrary point in the past

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 23 / 91

Data-sharing attributes

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 24 / 91

Data-sharing attributes

Data environment

A number of clauses are related to building the data environment that
the construct will use when executing

shared

private

firstprivate

default

threadprivate

lastprivate

reduction

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 25 / 91

Data-sharing attributes

Data-sharing attributes

Shared
When a variable is marked as shared, the variable inside the
construct is the same as the one outside the construct

In a parallel construct this means all threads see the same
variable

but not necessarily the same value
Usually need some kind of synchronization to update them
correctly

OpenMP has consistency points at synchronizations

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 26 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel shared (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel shared (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 2 or 3 (three printfs in total)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 / 91

Data-sharing attributes

Data-sharing attributes

Private
When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value

In a parallel construct this means all threads have a different
variable
Can be accessed without any kind of synchronization

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 28 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Can print anything (twice, same or different)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29 / 91

Data-sharing attributes

Data-sharing attributes

Firstprivate
When a variable is marked as firstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the
original value of the variable

In a parallel construct this means all threads have a different
variable with the same initial value
Can be accessed without any kind of synchronization

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 30 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Prints 2 (twice)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31 / 91

Data-sharing attributes

Data-sharing attributes

What is the default?
Static/global storage is shared
Heap-allocated storage is shared
Stack-allocated storage inside the construct is private
Others

If there is a default clause, what the clause says
none means that the compiler will issue an error if the attribute is not
explicitly set by the programmer

Otherwise, depends on the construct
For the parallel region the default is shared

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 32 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

x is shared

y is private

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33 / 91

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

x is private

y is shared

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33 / 91

Data-sharing attributes

Threadprivate storage

The threadprivate construct

#pragma omp t h r e a d p r i v a t e (var− l i s t)

Can be applied to:
Global variables
Static variables
Class-static members

Allows to create a per-thread copy of “global” variables
threadprivate storage persist across parallel regions if the
number of threads is the same

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 34 / 91

Threadprivate persistence across nested regions is complex

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

foo returns correct
address to caller

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35 / 91

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

foo returns correct
address to caller

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35 / 91

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

foo returns correct
address to caller

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35 / 91

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

foo returns correct
address to caller

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35 / 91

Part II

Worksharing constructs

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 36 / 91

Outline

The worksharing concept

Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 37 / 91

The worksharing concept

Outline

The worksharing concept

Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 38 / 91

The worksharing concept

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

Threads cooperate to do some work
Better way to split work than using thread-ids
Lower overhead than using tasks

But, less flexible

In OpenMP, there are four worksharing constructs:
single
loop worksharing
section

workshare

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 39 / 91

Restriction: worksharings cannot be nested

Loop worksharing

Outline

The worksharing concept

Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 40 / 91

Loop worksharing

Loop parallelism

The for construct

#pragma omp for [c lauses]
for (i n i t −expr ; t es t−expr ; inc−expr)

where clauses can be:
private
firstprivate
lastprivate(variable-list)

reduction(operator:variable-list)

schedule(schedule-kind)

nowait

collapse(n)
ordered

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 41 / 91

Loop worksharing

The for construct

How it works?
The iterations of the loop(s) associated to the construct are divided
among the threads of the team

Loop iterations must be independent
Loops must follow a form that allows to compute the number of
iterations
Valid data types for induction variables are: integer types, pointers
and random access iterators (in C++)

The induction variable(s) are automatically privatized

The default data-sharing attribute is shared

It can be merged with the parallel construct:
#pragma omp parallel for

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 42 / 91

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized
Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 91

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

New created threads cooperate to exe-
cute all the iterations of the loop

The i variable is automatically privatized
Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 91

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized

Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 91

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized

Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 91

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types!= cannot be used in the test expression

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 / 91

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types

!= cannot be used in the test expression

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 / 91

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types

!= cannot be used in the test expression

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 / 91

Loop worksharing

Removing dependences

Example

x = 0;
for (i = 0 ; i < n ; i ++)
{

v [i] = x ;
x += dx ;

}

Each iteration x depends on the
previous one. Can’t be parallelized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 45 / 91

Loop worksharing

Removing dependences

Example

x = 0;
for (i = 0 ; i < n ; i ++)
{

x = i ∗ dx ;
v [i] = x ;

}

But x can be rewritten in terms of i .
Now it can be parallelized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 46 / 91

Loop worksharing

The lastprivate clause

When a variable is declared lastprivate, a private copy is
generated for each thread. Then the value of the variable in the last
iteration of the loop is copied back to the original variable

A variable can be both firstprivate and lastprivate

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 47 / 91

Loop worksharing

The reduction clause

A very common pattern is where all threads accumulate some values
into a single variable

E.g., n += v[i], our heat program, ...
Using critical or atomic is not good enough

Besides being error prone and cumbersome

Instead we can use the reduction clause for basic types
Valid operators are: +, -, *, |, ||, &, &&,^, min, max

User-defined reductions coming soon...

The compiler creates a private copy that is properly initialized
At the end of the region, the compiler ensures that the shared
variable is properly (and safely) updated

We can also specify reduction variables in the parallel construct

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 48 / 91

Loop worksharing

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for reduction (+ :sum)
{

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

}
return sum;

}

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49 / 91

Loop worksharing

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for reduction (+ :sum)
{

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

}
return sum;

}

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49 / 91

Loop worksharing

The schedule clause

The schedule clause determines which iterations are executed by
each thread

If no schedule clause is present then is implementation defined
There are several possible options as schedule:

STATIC

STATIC,chunk

DYNAMIC[,chunk]

GUIDED[,chunk]

AUTO

RUNTIME

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 50 / 91

Loop worksharing

The schedule clause

Static schedule
The iteration space is broken in chunks of approximately size
N/num − threads. Then these chunks are assigned to the threads in a
Round-Robin fashion

Static, N schedule (Interleaved)
The iteration space is broken in chunks of size N. Then these chunks
are assigned to the threads in a Round-Robin fashion

Characteristics of static schedules
Low overhead
Good locality (usually)
Can have load imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 51 / 91

Loop worksharing

The schedule clause

Dynamic, N schedule
Threads dynamically grab chunks of N iterations until all iterations
have been executed. If no chunk is specified, N = 1.

Guided, N schedule
Variant of dynamic. The size of the chunks deceases as the threads
grab iterations, but it is at least of size N. If no chunk is specified,
N = 1.

Characteristics of dynamic schedules
Higher overhead
Not very good locality (usually)
Can solve imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 52 / 91

Loop worksharing

The schedule clause

Auto schedule
In this case, the implementation is allowed to do whatever it wishes

Do not expect much of it as of now

Runtime schedule
The decision is delayed until the program is run through the
sched-nvar ICV. It can be set with:

The OMP_SCHEDULE environment variable
The omp_set_schedule() API call

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 53 / 91

Loop worksharing

The nowait clause

When a worksharing has a nowait clause then the implicit barrier
at the end of the loop is removed

This allows to overlap the execution of non-dependent
loops/tasks/worksharings

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 54 / 91

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = 0 ;

First and second loop are independent,
so we can overlap them

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 55 / 91

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = 0 ;

Side note: you would better fuse
the loops in this case

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 55 / 91

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = v [i]∗ v [i] ;

First and second loops are dependent!
No guarantees that the previous iteration
is finished

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 56 / 91

Loop worksharing

The nowait clause

Exception: static schedules
If the two (or more) loops have the same static schedule and all
have the same number of iterations

Example

#pragma omp for schedule (stat ic , M) nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for schedule (stat ic , M)
for (i = 0 ; i < n ; i ++)

a [i] = v [i]∗ v [i] ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 57 / 91

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops
Loops must be perfectly nested
The nest must traverse a rectangular iteration space

Example

#pragma omp for collapse (2)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
foo (i , j) ;

i and j loops are folded and itera-
tions distributed among all threads.
Both i and j are privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 / 91

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops
Loops must be perfectly nested
The nest must traverse a rectangular iteration space

Example

#pragma omp for collapse (2)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
foo (i , j) ;

i and j loops are folded and itera-
tions distributed among all threads.
Both i and j are privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 / 91

Break

Coffee time! :-)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 59 / 91

Part III

Basic Synchronizations

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 60 / 91

Outline

Thread barriers

Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 61 / 91

Why synchronization?

Mechanisms
Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

barrier

critical

atomic

taskwait

ordered

locks

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 62 / 91

Thread barriers

Outline

Thread barriers

Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 63 / 91

Thread barriers

Thread Barrier

The barrier construct

#pragma omp barrier

Threads cannot proceed past a barrier point until all threads reach
the barrier AND all previously generated work is completed
Some constructs have an implicit barrier at the end

E.g., the parallel construct

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 64 / 91

Thread barriers

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65 / 91

Thread barriers

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65 / 91

Thread barriers

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65 / 91

Exclusive access

Outline

Thread barriers

Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 66 / 91

Exclusive access

Exclusive access

The critical construct

#pragma omp critical [(name)]
s t r u c t u r e d block

Provides a region of mutual exclusion where only one thread can
be working at any given time.
By default all critical regions are the same, but you can provide
them with names

Only those with the same name synchronize

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 67 / 91

Exclusive access

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 / 91

Exclusive access

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 / 91

Exclusive access

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 / 91

Exclusive access

Critical construct

Example

i n t x=1 ,y =0;
#pragma omp parallel num_threads (4)
{
#pragma omp critical (x)

x++;
#pragma omp critical (y)

y++;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69 / 91

Exclusive access

Critical construct

Example

i n t x=1 ,y =0;
#pragma omp parallel num_threads (4)
{
#pragma omp critical (x)

x++;
#pragma omp critical (y)

y++;
}

Different names: One thread can
update x while another updates y

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69 / 91

Exclusive access

Exclusive access

The atomic construct

#pragma omp atomic
expression

Provides an special mechanism of mutual exclusion to do read &
update operations
Only supports simple read & update expressions

E.g., x += 1, x = x - foo()
Only protects the read & update part

foo() not protected

Usually much more efficient than a critical construct
Not compatible with critical

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 70 / 91

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71 / 91

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71 / 91

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71 / 91

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72 / 91

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Different threads can update x at
the same time!

Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72 / 91

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ; Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72 / 91

Part IV

Practical: OpenMP heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 73 / 91

Outline

Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 74 / 91

Heat diffusion

Outline

Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 75 / 91

Heat diffusion

Before you start

Enter the OpenMP directory to do the following exercises
Session4.1-exercise contains the serial version of the Heat
application

you can use SsGrind on heat-tareador to determine parallelism,
and observe diferences among the three algorithms

and then annotate the application with OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 76 / 91

Heat diffusion

Description of the Heat Diffusion app Hands-on

Parallel loops
The file solver.c implements the computation of the Heat diffusion

1 Annotate the jacobi, redblack, and gauss functions with OpenMP
2 Execute the application with different numbers of processors

compare the results

evaluate the performance

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 77 / 91

Break

Bon appétit!*

*Disclaimer: actual food may differ
from the image! :-)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 78 / 91

Part V

Programming using a hybrid
MPI/OpenMP approach

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 79 / 91

Outline

MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 80 / 91

MPI+OpenMP programming

Outline

MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 81 / 91

MPI+OpenMP programming

Distributed- vs Shared- Memory Programming

Distributed-memory programming
Separate processes

Private variables are unaccessible from others
Point-to-point and collective communication

Implicit synchronization

Shared-memory programming
Multiple threads share same address space
Explicit synchronization

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 82 / 91

MPI+OpenMP programming

Hybrid programming

Combining MPI+OpenMP
Distributed algorithms spread over nodes
Shared memory for computation within each node

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 83 / 91

MPI+OpenMP programming

Opportunities

When to use MPI+OpenMP
Starting from OpenMP and moving to clusters with MPI
Starting from MPI and exploiting further parallelism inside each
node

Improvements
OpenMP can solve MPI imbalance

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 84 / 91

MPI+OpenMP programming

Alternatives

MPI + computational kernels in OpenMP
Use OpenMP directives to exploit parallelism between communication
phases

OpenMP parallel will end before new communication calls

MPI inside OpenMP constructs
Call MPI from within for-loops, or tasks

MPI needs to support multi-threaded mode

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 85 / 91

MPI+OpenMP programming

Compiling MPI+OpenMP

MPI compiler driver needs the proper OpenMP option
mpicc -openmp
mpicc -fopenmp

Also useful
mpicc -show <your command line options and files>

It displays the full command line executed by mpicc to compile your
program

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 86 / 91

Part VI

Practical: MPI+OpenMP heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 91

Outline

MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 88 / 91

MPI+OpenMP Heat diffusion

Outline

MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 89 / 91

MPI+OpenMP Heat diffusion

Before you start

Enter the Session4.2-exercise directory to do the following exercises

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 90 / 91

MPI+OpenMP Heat diffusion

Description of the Heat Diffusion app Hands-on

Parallel loops
The file solver.c implements the computation of the Heat diffusion

1 Use MPI to distribute the work across nodes
2 Annotate the jacobi, redblack, and gauss functions with OpenMP

tasks
3 Execute the application with different numbers of

nodes/processors, and compare the results

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 91 / 91

	OpenMP fundamentals, parallel regions
	OpenMP Overview
	The OpenMP model
	Writing OpenMP programs
	Creating Threads
	Data-sharing attributes

	Worksharing constructs
	The worksharing concept
	Loop worksharing

	Basic Synchronizations
	Thread barriers
	Exclusive access

	Practical: OpenMP heat diffusion
	Heat diffusion

	Programming using a hybrid MPI/OpenMP approach
	MPI+OpenMP programming

	Practical: MPI+OpenMP heat diffusion
	MPI+OpenMP Heat diffusion

