
Task decompositions analysis

for the heat equation

E. Ayguadé

October 14, 2013



Index

Index 1

1 Sequential heat diffusion program 2

2 Analysis with Tareador 4

1



1

Sequential heat diffusion
program

In this document we guide you through the analysis of potential task decom-
positions for the three solvers available in a sequential code that solvers the
heat equation. The code simulates the diffusion of heat in a solid body using
several solvers for the equation (Jacobi, Red–Black and Gauss–Seidel). Each
solver has different numerical properties which are not relevant for the purposes
of this laboratory assignment; we use them because they show different parallel
behaviors.

The picture below shows the resulting heat distribution when a single heat
source is placed in the lower right corner. The program is executed with a
configuration file (test.dat) that specifies the size of the body, the maximum
number of simulation steps, the solver to be used and the heat sources. The
program generates performance measurements and a file heat.ppm providing
the solution as image (as portable pixmap file format, which can be visualized
using "display heat.ppm").

Figure 1.1: Image representing the temperature in each point of the 2D solid
body

1. Login into the Marenostrum machine at the Barcelona Supercomputing
Center (BSC-CNS). To do that open a terminal window in your laptop
and connect to Marenostrum using the login credentials already provided

2



to youl. Copy the tarball with all files needed to do this laboratory
session from /home/nct00/nct00002/heatEquation.tar.gz in Marenos-
trum and uncompress it. Remember to source the environment.bash

file to appropriately define paths and environment variables ("source
./environment.bash").

2. Go into the heatEquation/tareador directory. Compile the sequential
version of the program using "make heat" and execute the binary gen-
erated ("./heat test.dat"). The execution reports the execution time,
the number of floating point operations (Flop) performed, the average
number of floating point operations performed per second (Flop/s), the
residual and the number of simulation steps performed to reach that resid-
ual. Save the output image file generated for validation purposes with a
different name, e.g. heat-jacobi.ppm.

3. You can change the solver from Jacobi to Red-Black and to Gauss-Seidel
by editing the configuration file provided (test.dat). The result files
generated when using different solvers are slightly different; rename the
.ppm files so that you can use them to check the correctness of the parallel
versions you will program later in the course.

3



2

Analysis with Tareador

Next we will use Tareador to analyze the potential parallelism that we can
achieve for the three different solvers. We already provide you with an in-
complete instrumented version for the Jacobi solver; take a look at the instru-
mentation in heat-tareador.c in order to identify the parallel tasks we are
proposing.

1. Compile the initial task decomposition using "make heat-tareador". Ex-
ecute the "run tareador.sh" script to run the binary generated (using
"./run tareador heat-tareador small.dat"). Notice that we are us-
ing the small.dat as the configuration file for the Tareador instrumented
executions (which just performs one iteration on a very small image). The
script will open a new window to display the task graph obtained from
the instrumented execution.

2. Edit solver-tareador.c in order to look for potential tasks inside the
Jacobi solver. Uncomment lines 24, 25 and 35. Save the file, compile
and execute again. Finer grained tasks appear inside the initial outer
task. Which accesses to variables are causing the serialization of all the
tasks when using the Jacobi solver? If you were able to protect them,
what would be the task graph that would be generated? Insert the calls
to tareador disable object and tareador enable object in the source
code and obtain the new task graph. Are you increasing the parallelism?
Have you obtained the task graph you were expecting?

3. Simulate the parallel execution by executing the run dimemas.sh script,
in which you will have to specify the name of the instrumented binary
(heat-tareador) and the number of processors you want to simulate, for
example 1, 2, 4, 8 and 16. The simulation opens a couple of Paraver win-
dows: one showing a timeline with the execution of the tasks and another
one with the parallelism profile. The same colors used in the graph are
used now to display the temporal execution of the tasks. On the bottom-
right corner you have the execution time as simulated by Dimemas.

4. After analyzing the simulated executions, do you think there are other
parts of the code involved in the execution of the Jacobi solver that can
be decomposed into tasks? Instrument the code to create these new tasks
and repeat the process.

4



5. Repeat the previous steps for the Red–Black solver. When using the
Red-Black solver, which accesses to variables are causing the dependences
among Red tasks, among Black tasks, and among Red and Black tasks?

6. Repeat the previous steps for the Gauss–Seidel solver. Identify the causes
for the dependences that appear when using the Gauss-Seidel solver.

5


