
J.Vera BSC-INB Technical Report 1/2/2007

- 1 -

TECHNICAL REPORT 1

BSC-INB

COMPUTATIONAL BIOLOGY PROGRAM

Javier Vera (BSC-INB)

J.Vera BSC-INB Technical Report 1/2/2007

- 2 -

A parallelization of a bioinformatic program: PHASE

Javier Vera. Barcelona Supercomputing Center (Spain) javier.vera@bsc.es

Summary of the project

This paper presents a way to parallel PHASE, a program that implements a

Bayesian statistical method for reconstructing haplotypes from population

genotype data. The software can deal with SNP, microsatellite, and other multi-

allelic loci and missing data are allowed.

This version of PHASE can perform a permutation test for assessment of the

significance of differences in haplotype frequencies in case and control groups.

This feature test the null hyphotesis that the case and control haplotypes are a

random sample from a single set of haplotype frequencies, versus the alternative

that cases are more similar to other cases than to controls.

The work presented here is focussed in the parallelization of PHASE to

improve its performance in computers with parallel architecture. The effort has

been focussed in the parallelization of the permutation test for assessing

significance of differences in haplotype frequencies. Accordingly, the speedup

obtained by executing the parallel version in a multiprocessor only will be

noticed if it is turned on (-c parameter).

1. Introduction to PHASE

PHASE[1] is a popular bioinformatics program designed to process and to derive

Haplotype information on population data, something crucial in current genomic studies [2,

3, 4, 5]. The software is free for non-commercial use, and may be licensed for commercial

use.

J.Vera BSC-INB Technical Report 1/2/2007

- 3 -

PHASE creates statistical models that can be used to infer phase at linked loci from

genotype, defining then haplotypes. The two most statistical methods used in haplotype

studies are maximum likelihood, implemented via the expectation-maximization algorithm

[6, 7, 8] and a parsimony method [9]. PHASE is a new statistical method that improves on

these by exploiting ideas from population genetics and coalescent theory that make

predictions about the patterns of haplotypes to be expected in natural populations. For more

details on PHASE see [10, 11].

This report shows an external parametrization work of parallelization of PHASE. All the

work was done without knowing about PHASE code, which implies that this methodology

can be applied to programs. The work done considers PHASE as a simple black-box

dealing only with program structures, algorithms, etc. without detail knowledge of the

mathematical or physical principles guiding the algorithms. Using this procedure, no is

possible a great improvement in the algorithms, but I will show that despite of that a

tremendous improvement in the performance of the application is possible.

2. Motivation

PHASE execution is very compute-intensive; as can be seen beyond, a single execution

may take almost three days. Normally, the user of PHASE collects data and runs a single

execution of the program. Since there are not other executions to perform in parallel, the

only way to get the results in less time is making faster the execution of PHASE. This can

be done by parallelizing the code.

3. PHASE

To run PHASE [16], a proper environment needs to be created. The user is the

responsible of creating this environment, extracting the files from the tar.gz file, preparing

the input files and read the manual to know what parameters are needed.

J.Vera BSC-INB Technical Report 1/2/2007

- 4 -

 Before the “production” runs of PHASE tests and benchmarking was performed to: i)

verify the goodness of results and ii) to obtain a set of reference values before

parallelization. After this, we can focus in the most interesting part for this study: the

feature case-control permutation test of PHASE.

3.1 Performing a case-control permutation test

Version 2 of PHASE can perform a permutation test to validate the significance of

differences in haplotype frequencies in case and control groups. More precisely, PHASE

tests the null hypothesis that the case and control haplotypes are a random sample from a

single set of haplotypes frequencies, versus the alternative possibility, i.e: that some cases

are more similar to other cases than to controls. To perform the permutation test two things

must be done:

1. specify the case-control status of each individual in the input file

2. use -c flag when running the program to tell PHASE that the input file contains case-

control status data

The number of permutations performed in PHASE can be specified after the -c flag. Eg.

-c100 will perform 100 permutations. If no number is specified, the default is 100

permutations. The permutation test is quite computer- intensive, and in fact the authors of

PHASE recommend to start with a low value and to decide then whether or not it is worth

doing a larger number.

3.2 Execution time. Motivation for parallelizing

The execution time of PHASE performing case-control permutation test is quite long,

depending on the input file it could take from some minutes -very small files- to several

days. As an example, running an input file with 557 SNPs takes more than 69 hours in an

Itanium2 processor. Increasing the number of SNPs will make unaffordable the calculation.

This underlines the need to parallelize the program. The use way of PHASE is doing

sporadic executions, only one run for each study. Therefore the main goal is to try to

accelerate the single execution of PHASE. To be efficient, in this process we should locate

which part of the code of PHASE is the most used and try to parallelize it.

J.Vera BSC-INB Technical Report 1/2/2007

- 5 -

3.3 Execution profiling. Find out the zone to parallelize

The main problem of using profiling with tools like gprof [13] is the unpredictability of

the dynamic behavior of the programs. That is, profile depends on input definition, which

implies that the location of hot points requires of different executions to define consensus

or systematic hot-spots. For this purpose, PHASE calculations were performed with inputs

sizes of 557 SNPs to 20 SNPs, 10 SNPs and 5 SNPs.

After the profiling was done for these inputs and all results were filtered the hottest

region of program was found. It is located in the HapListMCMCResolvePhaseRemove

function, where the code spends more than 90% of the time. It is then clear that the target

zone is inside this function.

3.4 Execution tracing. Examine the zone

Paraver[15] and Ompitrace[14] were used to trace the target function

HapListMCMCResolvePhaseRemove. The instrumentation of this function has been done

manually, it has consist in identify the different zones inside this function, flagging the

main loops. After analyzing these loops, we found that PHASE has five important zones

inside the target function, which we labelled as B1, B2, B3, B4 and B5. Trace analysis

reveals B1 and B4 zone implies a very large consumption of CPU time, while regions B2 or

B3 have a smaller impact in total execution time. More detailed analysis show that in fact

two subzones (B4.1 and B4.2) can be located within the B4 zone. Taking together B1 and

B4 zones represent more than 94% of execution time.

The contribution of a zone to the execution time can be due to different reasons: i) it is

huge in code (ie nested loops or loops with great number of iterations), ii) the execution is

slower than the other zones (ie calling hard functions) or iii) this zone is entered many

times. For practical purposes it is useful to group these 3 zones in a different way: i) those

which contribute with long time intervals but which are entered just a few times and ii)

zones that contributes to the execution time along little intervals, but are visited very often.

J.Vera BSC-INB Technical Report 1/2/2007

- 6 -

It is worth noting that these two zones must usually be parallelized in a different way

and synchronization must be preserved at all times. Caution is necessary, since if there are

many threads performing a very fast work in parallel, maybe the benefits from

parallelization are overcomed by the overhead of synchronizing these threads. A priori the

big chunks are more likely to obtain a good Speedup parallelizing them that the little

chunks because will require -in global terms- less points of synchronization.

J.Vera BSC-INB Technical Report 1/2/2007

- 7 -

4 Parallelization. OpenMP

I will summarize the process of parallelization, without entering in tedious technical

details on the code structures that must be changed in order to parallelize with OpenMP[17]

or with MPI[18], which are the two protocols used for parallelization of the program. There

are two versions of the parallel code, they are quite similar but one is made using only

OpenMP and the other is made using only MPI.

In this report only will be take into account the parallelized version with OpenMP, but

the MPI version is quite similar.

After identifying the zones that can be parallelized to obtain a great performance the

parallelization using OpenMP was not very complicated. It has been done using, basically,

“parallel for” directives and some reduction operation after these.

The process of parallelizing an application sometimes is very tedious and must be feed

with many executions and see what happens across these executions, to evaluate if the

achievement is worth, etc. The speedup shown is good, but further improvement is

possible, especially in reference to the scalability of the process for higher number of

threads (see Figure 1 and Table 1).

Figure 1: Reduction time achieved with the first parallelization

J.Vera BSC-INB Technical Report 1/2/2007

- 8 -

The poor scalability of the parallelization work indicates the presence of bottlenecks in

the parallel zone. Using Paraver, the 2D analysis tool, one can spot that the Speedup

achieved in the hot zones are not the same for each one. This suggests that there are parallel

zones that potentially could be parallelized but in fact should be not parallelized because

the overhead of synchronizing is huge and hinders the entire calculation. Thus we need

identify these zones to avoid the parallelization or to change the way in what these zones

are parallelized to improve the throughput.

With tracing tools we can look inside the hot zones and to identify the subzones that are

causing the bottlenecks. The speedup obtained in the zone B1 or B4.2 is not very good

(speedup 5 and 1.85), mainly because the lack of scalability. On the contrary, zone B4.1

achieves 15.23 Speedup (from an optimum 16).

Furthermore, we can look inside this zones trying find out where is the bottleneck. One way

is to split these zones in more zones to isolate these that are not good to parallelize. We can

do these with the help of tracing tools, manual instrumentation. Thus, Paraver demonstrate

that inside B1 there are one zone that is not a good idea to parallelize because the overhead

of parallelizing overcomes the benefits of the execution in parallel. This also happens in

B4.2, then we need to avoid the parallelization of these problematics subzones (new

labeled): B1.2, B4.2.2 and B4.2.3.

The parallel fraction of PHASE after avoiding zones that are not optimum for

parallelization is about 92.79%. The maximum Speedup achievable is then given by

Amdahl’s Law[12]: 1 / (0.0721 + (0.9279/P)). Expanding P we have the Table 1 where are

shown the maximum Speedup achievable and the current Speedup got with the last

parallelization. Clearly, we are very close to the maximum theoretical limit given by

Amdahl’s law. Note that there is always a synchronization overhead that limits the Speedup

and as more threads you put, more synchronization has to be done.

J.Vera BSC-INB Technical Report 1/2/2007

- 9 -

 2 threads 4 threads 8 threads 16 threads
Maximum 1.8655 3.2887 5.3167 7.6868

Achieved 1.8659 3.1482 4.7628 6.0241

Table 1: Limits of the Speedup and Speedup achieved by the parallelization

5 Conclusions and recommendations
PHASE is a good example of a very complex program that it would be very hard to

parallelize without using profiling or tracing tools. The best thing to optimize a code

execution comes, for sure, of knowing the code perfectly and be able to run many profiling

recompilations with many different inputs. However, the time to do this with a very

complex program as PHASE is sometimes prohibitive and require some expertise that is

not common in software engineers.

I show here a way to implement parallelism in a complex program like PHASE. After

working with PHASE several months, I know that a ve ry big improvement could be taken

from changing the code structures. In fact, the numbers in Table 1 are good but if we

compare these numbers with the numbers obtained from the original version of PHASE

they are even better. This means that PHASE original sequential code can be improved

without parallelize it and with this parallel version I have inserted some of these

improvements. Thus if you want to run PHASE in a single-processor machine, try to run

this parallel version because it has some code tricks that may accelerate this execution even

with only one processor. These code tricks are based on reusing memory –don’t call several

times to malloc and free subroutines if it is not necessary- and some minor changes in the

way of using the STL of C++.

J.Vera BSC-INB Technical Report 1/2/2007

- 10 -

References

[1] PHASE v2 http://www.uwopendoor.org/ViewSoftware.asp?softwareid=10

parallel PHASEv2 http://www.uwopendoor.org/ViewSoftware.asp?softwareid=13

[2] N. Risch, K. Mer ikangas The future of genetics studies of complex human diseases.

Science 273:15161517, 1996

[3] SE. Hodge, M. Boehnke, MA. Spence Loss of information due to ambiguous

haplotyping of SNPs. Nat Genet 21:360361, 1999

[4] MJ. Rieder, SL. Taylor, AG. Clark, DA. Nickerson Sequence variation in the human

angiotensin converting enzyme. Nat Genet 22:5962,1999

[5] RM. Harding, SM. Fullerton, RC. Griffiths, J. Bond, MJ. Cox, JA. Schneider, DS.

Moulin, JB. Clegg Archaic African and Asian lineages in the genetic ancestry of modern

humands. Am J Hum Genet 60:772789, 1997

[6] L. Excoffier, M. Slatkin Maximum-Likelihood Estimation of Molecular Haplotype

Frequencies in a Diploid Population Molecular Biology and Evolution 12(5):921-

927,1995

[7] M. Hawley, K. Kidd HAPLO : a program using the EM algorithm to estimate the

frequencies of multi-site haplotypes. J Hered 86:409411, 1995

[8] JC. Long, RC. Williams, M. Urbanek An E-M algorithm and testing strategy for

multiple locus haplotypes. Am J Hum Genet 56:799810, 1995

[9] AG Clark Inference of haplotypes from PCR-amplified samples of diploid

populations. Molecular Biology and Evolution 7(2):111-122,1990

[10] M. Stephens, N. Smith, and P. Donnelly A new statistical method for haplotype

reconstruction from population data. American Journal of Human Genetics, 68, 978–

989.,2003

[11] M. Stephens, and P. Donnelly A comparison of Bayesian methods for haplotype

reconstruction from population genotype data. American Journal of Human Genetics,

73:1162-1169., 2003

J.Vera BSC-INB Technical Report 1/2/2007

- 11 -

[12] G. Amdahl Validity of the Single Processor Approach to Achieving Large -Scale

Computing Capabilities AFIPS Conference Proceedings, (30), pp. 483-485, 1967

[13] S. L. Graham, P. B. Kessler, M. K. McKusick gprof: a Call Graph Execution Profiler

SIGPLAN Symposium on Compiler Construction, 1982

[14] OMPITRACE: Instrumentation of combined OpenMP and MPI applications

http://www.cepba.upc.es/paraver/docs/OMPItrace.pdf

[15] PARAVER: Parallel Program Visualization and Analysis tool

http://www.cepba.upc.es/paraver/

[16] M. Stephens, N. Smith, and P. Donnelly Documentation for PHASE, version 2.1

http://www.stat.washington.edu/stephens

[17] OpenMP: Standard and specifications

 http://www.openmp.org

[18] MPI: The message Passing Interface standard

http://www-unix.mcs.anl.gov/mpi/index.html

Acknowledgements

The author acknowledges the valuable help and advice of Prof. Xavier Messeguer and Prof.

J.Dopazo. The author wishes to express his deepest gratitude to BSC-INB colleagues for

many helpful discussions. I want to give a special acknowledgement to Prof. Modesto

Orozco and Prof. Jesus Labarta by their aid and advice in writing and reviewing this

technical report. This work was supported by Genoma España through the Instituto

Nacional de Bioinformática.

