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Abstract 
This report presents a benchmark of three programs more commonly used for molecular 
dynamics simulations, with special emphasis on their behavior in parallel machines like 
Mare Nostrum. 

Introduction 
Molecular dynamics (MD) is a technique first developed in the middle seventies and 
applied to the protein world in the late nineties. The theoretical basis of MD is anchored 
in the basic rules of classical mechanics and the works of Newton and Langevin. The 
objective of MD is to reproduce a time-trajectory of the structure of a molecule, in our 
case protein. This is done by numerical integration of the equations of motion for a 
system whose interactions are defined by a simple atomic force-field like that shown in 
eqs 1-3. A standard MD step starts with the evaluation of the potential energy (eqs 1-3). 
Analytical derivation of the potential energy leads the forces acting on each atom, 
which using Newton’s second law provides the acceleration. Integration of the 
accelerations yields new velocities, whose integration provides the new positions, 
completing then the integration step.  
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where l and θ stands here for bond lengths and angles, with subscript 0 for equilibrium 
values, Ks and Kb the associated force constants; Φ are torsion angles, Vi are the 
potentials associated with the Fourier terms used to represent torsions, ξ is the phase 
angle, Q are atomic charges, C and D denote the van der Waals parameters, and rab 
stands for interatomic distance. 

 
For stability reasons the integration step needs to be shorter than the faster movement in 
the system, which forces us to use integration steps in the femtsecond range. This means 
that to collect 1 nanosecond of trajectory we need to perform 1 million integrations and 
a billion to collect a millisecond.  

The cost of a MD simulation depends mostly on three considerations: 

• The size of the system: larger the system greater the number of interactions and 
accordingly the cost of the simulation. Standard systems studied now are in the 
range of 10-20000 atoms. Some simulations have been reported for larger systems 
(around 100000 atoms) and a few groups have reported simulations for even bigger 
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systems like membranes, ribosomes,…, approaching 1 million atoms (the counting 
considers always both macromolecule and solvent atoms). 

• The simulation conditions: different technicalities have a direct influence in the 
cost of the calculation. The “rule of thumb” is that as we make simulation 
conditions closer to the biological environment calculation is more expensive. The 
current “state of the art” is to simulate the system under the constraints of constant 
pressure and temperature, using large boxes of solvent periodically reproduced in 
the space. Fast versions of Ewald’s method are used to represent distant interactions 
out of the primary interaction cell. Integration steps of 1 fs (for some integrators 2 
fs) are used. 

• Length of the trajectory: First MD simulations were done in the picosecond time 
scale. Current “state of the art” for 10-20000 atoms is in the 10-50 ns range. A few 
simulations have been reported in the range of 100 ns and the microsecond time 
scale can be considered a “grand challenge” accessible only for a few groups in the 
world. To reach the 10 ns is a major effort involving years of CPU for larger 
systems (100000 to 1 million atoms). Considering that most biological processes 
happen in the millisecond time scale is clear that the MD community leads 
computers at least 3 orders of magnitude faster than current ones. 

 
The development of MD codes started in the late seventies and many human-years of 
work are behind these codes, which in fact contain many other functions than the simple 
MD calculation. The first code developed was CHARMM, originated by the work of 
Karplus’s group. Almost simultaneously was the development of GROMOS by van 
Gunsteren and coworkers. A few years later Kollman’s group developed the first 
versions of AMBER and former van Gunsteren’s students developed GROMACS, the 
first program developed thinking specifically on computer efficiency. More recently 
K.Schulten’s group developed NAMD by rewriting from scratch existing codes 
searching in this case for better parallelism. All the groups developing codes also 
created their own force-field by fitting equations to experiments of high level quantum 
mechanical data. This is the case of CHARMM-force-field developed by Karplus’s 
group, GROMOS-force-field by van Gunsteren’s group and AMBER-force-field by 
Karplus’s group. These and the OPLS force-field developed by Jorgensen and 
coworkers are considered the most powerful ones for the study of proteins.  

In a recent work we performed a systematic comparison of force-fields in the study of 
equilibrium dynamics of proteins [16]. Here we became interested in the study of 
computational performance of three of the most used second-generation computer 
programs: GROMACS, NAMD and AMBER. In particular we explored the serial 
performance (single processor runs) and the parallel performance in Mare Nostrum 
computer. 

Benchmarking the simulators 
It is obvious that serial performance in this kind of programs is important, but parallel 
performance and scalability are the real crucial point when the program is going to be 
used in a massive parallel machine like Mare Nostrum. 

In the Barcelona Supercomputing Center we have been working with three widely used 
simulation program suites. All of them can work in serial and parallel versions: 

• Amber v8 [1] 
• NAMD v2.6 [2] 
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• Gromacs v3.2.1 [3, 11] 
 

 
To perform the benchmark we selected three proteins of different size with PDB codes 
1CQY [4] (starch binding domain of bacillus cereus beta-amylase), 2HVM [5] 
(Hevamine A) and 1GND [6] (guanine nucleotide dissociation inhibitor, alpha-isoform). 

The sizes of the systems (see Table 1) cover the range of small to large proteins: 

Protein Protein residues Protein atoms Total atoms 
1CQY 99 1038 28310 
2HVM 273 2701 31550 
1GND 430 4342 66213 

Table 1: Sizes of the systems used as input to the simulators that we are benchmarking 
 
All trajectories were collected using “state of the art” simulation conditions using 
periodic boundary conditions with Particle Mesh Ewald technique to reproduce long 
range electrostatic effects and keeping constant pressure and temperature [16]. 

Serial performance 
The first MD codes were developed with a serial approach because no parallel facilities 
were easily available. Some of them were later ported to a parallel environment, like 
Amber and Gromacs. NAMD was created having a parallel environment as the main 
scenario where it would execute. 

Gromacs 
The Gromacs program suite is a comprehensive collection of preparation, simulation 
and analysis programs. They follow the UNIX philosophy of many small and 
specialized utilities which achieve their objective when working together. 

Gromacs was written using C [15], and the effort during development was in the speed 
and performance of the serial execution.  

We can have the simulator compiled in four different ways depending upon it works 
with single precision floating point operations or double precision floating point 
operations and also if the code is compiled to work in serial or in parallel. 

There have been important efforts to speed up the most costly calculus of the 
simulation, adapting the code specifically for different architectures. The inner loops 
have been heavily optimized, having assembly code for x86, Alpha and PowerPC 
platforms. 

Working with single precision floating point operations, the code can be vectorized by 
the hardware of some current processors, speeding up some operations. But these loops 
are only available in single precision mode. When double precision floating point 
operations are performed, the data is too big to fit into the registers in a useful way and 
the vectorization is not available, thus offering a quite worst performance. 

Amber 
The Amber program suite comprises utility programs for the preparation of the input 
files, programs for the simulation, programs to analyze the results and also a program 
specially created to maximize the performance of the simulation when the simulation 
parameters meets certain requirements. 
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Pmemd (the new Amber simulator engine) has been written using Fortran-90 [12], 
while the original simulator (called sander) was written using an older version of the 
Fortran standard, Fortran-77 [13]. Pmemd was created to speed up MD simulations 
under Particle Mesh Ewald periodic boundary conditions which was prohibitively slow 
in the old sander module of AMBER. 

Pmemd is a kind of sander rewriting from scratch. The new language allows the 
developers to use improved data structures and dynamic memory allocation, which 
makes the program lighter. The direct force evaluation code has been also rewritten, 
resulting in a code which uses considerably less memory. It has been programmed 
trying to repeatedly use the data which have some kind of locality, thus rising the cache 
hit ratio and therefore, reducing the time needed by a simulation. 

NAMD 
The NAMD program suite itself is the smallest suite of the three molecular dynamics 
suites that we are analyzing now. It contains only the main simulator and a few utilities 
to prepare the inputs for simulation. 

The analysis and visualization of the results are done using other utilities from the same 
research group, like VMD and BioCoRE. 

NAMD has been developed using C++ [14], but having a workstation’s cluster as the 
natural execution environment of the simulator, hence a parallel communications library 
is used in the core and an appropriate object definition suitable for distributing the work 
across the processors. This architecture is also valid when we are using only one 
processor because the only difference is that the communications are local and do not 
have any latency, just the time to copy the data in-memory. 

There are some approximations applied to speed up the algorithm: 

• Use of three levels of integration loops: 
o Inner loop: bonded forces 
o Middle loop: Lennard-Jones and short-range electrostatic forces 
o Outer loop: long-range electrostatic forces 

The forces on the outer loop vary slower than the forces in the inner loop, so seems 
natural to compute the forces on the outer loop less frequently than the forces in the 
inner loop. 

This approach reduces the amount of operations needed along the simulation while 
maintaining a high level of accuracy. 

• SPME: Smooth Particle Mesh Ewald. It is a refinement of the original PME 
method that uses B-splines to approximate the forces on the atoms. The 
continuity of B-splines functions and their derivatives makes the analytical 
expression of forces easy to obtain and reduces the number of FFTs by half 
compared to the original method. 

Serial performance 
Benchmarks for the serial version are shown in Figure 1. It must be noted that all the 
metrics obtained and used in this report involve only the total time used by the 
application since the beginning until the end of the program (also known as wall clock 
time). No conclusions about the efficiency of the codes can be derived from this data. 
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Amber-SANDER programs are the slowest in serial execution, with small gains with 
pmemd over sander, specially over bigger systems. 

NAMD has similar timings to the Amber-SANDER ones. It is faster than pmemd in all 
cases but its performance is not extremely good. 

Gromacs is the clear winner of the 
benchmark. Its timings are two or three 
times faster than its competitors. This 
fact is probably due to the different 
goals that the developers had in mind. 
Amber and NAMD developers tried to 
make their code parallel and scalable, 
paying special attention to the 
parallelization methods and 
communications overhead. On the other 
hand, Gromacs developers has focused 
on implementing the serial routines in 
the quickest way, devoting so many 
time to the optimization of the internal 
loops, where the code spends most of 

its time. They do not only optimized their code in an algorithmical way, they get down 
to the assembly level in order to codify specialized loops for every architecture, getting 
an instruction pipeline with a very low number of stalls and idle cycles. 

Code parallelization 
Serial code is the basis for the posterior parallelization. A given serial code can be fast 
or slow, and the parallelization difficulty usually changes with the code efficiency: a 
faster code means a greater synchronization/computing ratio. 

The different programs have chosen different parallelization strategies which state 
clearly that there is no consensus on the best methodology to use in order to partition 
the same problem in calculable partitions.  

Now I will explain how the different simulators addressed this problem and which have 
been the problems that aroused with each decision. 

Gromacs 
Gromacs was created having low-cost computers in mind. This means that they do not 
rely on having neither fast networks nor full interconnection schemes between the 
processors. The basis for its intercommunication paradigm was the assumption of a ring 
topology [10]. They choose this topology because a ring can always be mapped onto a 
more general interconnection scheme like a hypercube or a tree, and in the case we do 
not have expensive hardware, this topology can also be used. 

Because of each element of the ring has only two neighbors, left and right, it was 
decided that the better decomposition that can be used was to decompose the simulation 
cell along the X axis, slicing it and assigning each slice to a processor. This kind of 
decomposition has advantages over particle decomposition, like the easiness of load 
balancing, which is very useful in order to obtain a good scaling factor. But one of the 
disadvantages of this approach is that the parallelism depends on the input shape.  
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This data distribution scheme 
needs every processor being aware 
of the coordinates for all the 
particles all the time while 
distributing the forces back to the 
other processors. The velocities are 
kept on the “home processor” of 
each particle, and the fixed 
interaction lists (for bonded 
interactions, angles, dihedrals…) 
are also kept on a single processor, 
provided that care is taken that 
every processor gets a similar 
amount of bonded interactions. 

Another parallelization used in 
some parts of the code is the one 
related to the FFT calculus. It is 
performed through the FFTW 
library, which uses MPI to 
parallelize the calculus. 

This decision is against the 
original idea of permitting only 
have a physical ring topology 
because the FFTW library is not 
restricted to use only a ring 
topology. In that case, the 
underlying MPI implementation 
will have to take care of the 
messages addressed to processors 
which are not the neighbors of the 
sending processor in a ring 
topology, having an important 
performance impact and increased 
network usage. 

We ran some tests with this simulator, identifying some incoherent results compared 
with other simulations. This can be seen in Figure 2 and 3, which show artifactual 
trajectories in GROMACS due to a sharp transition to unfolded structures of proteins 
after 1 nanosecond (note the large jump in root mean square deviation in Fig 1), when 
the protein is found stable with other programs (see AMBER profile in Fig. 2). Analysis 
of the trajectories discarded the existence of force-field artefacts, since while OPLS-
simulations performed in NAMD behave well, those performed in GROMACS unfold 
the structure. The error reported in Figure 2 was found for all the proteins in our 
MICROMODEL database (see data at http://www.bsc.es/). The time of the trajectory 
where corruption appears is stochastic (the same simulation performed twice is 
corrupted at different points) and depends on the number of processors: larger the 
number sooner the corruption.  

These results lead us towards an issue with the parallelization code, but at this point the 
reasons for the stochastic behaviour of parallel versions of GROMACS in Mare 
Nostrum are unclear, since recompilation was carefully done and all tests and 

Figure 2: RMSd plot (nm vs. ps) of a simulation made with 
Gromacs applying the G43a1 force field. 

Figure 3: RMSd plot (nm vs. ps) of a simulation made with 
Amber applying the Amber force field. 
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benchmarks were successfully passed. In any case MN users are strongly encouraged to 
check carefully trajectories collected with parallel version of GROMACS 3.2.1. 

Amber 
There is a little more information referring to the parallelization methodology used in 
sander (the main simulator) and pmemd (the specialized simulator) than to the serial 
code. 

Amber was first parallelized for the hardware found in CRAY T3D and T3E. 
Extensions to support other architectures were added later, including a general Message 
Passing implementation. 

Parallelization in Amber works using a replicated data approach [7]. This is a flexible 
method, but suffers from communications overhead when collecting and broadcasting 
coordinates and forces for the entire system to all processors at each step. 

Because most of the time is spent in the non bonded interactions and the Particle Mesh 
Ewald (PME) algorithm, hence the main effort has been directed to this area. 

In the Ewald method, the sum of Coulomb’s Law terms is expanded into several sums: 

E �electrostatic�=E�direct �+E �reciprocal �+E�correction� 
E �direct � is identical to the sum used with the cutoff method. E �reciprocal � depends 

on a discrete Fourier transform and E �correction� serves the purpose of eliminating 
the terms that has been double-summed in the reciprocal calculus. 
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The direct sum can be computed in each processor once the atom pair list is generated. 
The simulation box is divided in subcells so that their dimension is at least 1/3 of the 
cutoff distance. Although the search part of the list building scales perfectly, the setup 
of the subcells does not. Each processor executes the direct sum on its portion of the 
pair list and stores the resulting energy and forces locally. Global summing is done after 
all other contributions. The reciprocal sum needs much more effort. The entire 
reciprocal energy and force calculation is distributed by dividing the charge grid into 
equal parts for each processor. The constraint was to limit the breakdown of the grid to 

xy planes. This limits the scaling to the number of planes. If we have a simulation box 
of dimensions 60x60x60Å and a charge grid of the 60x60x60, the space is divided in 60 
planes, and using more than 60 processors give no speed up because the extra 
processors above 60 remain idle. The best performance is obtained when using 20 or 30 
processors, because using 60 processors needs to communicate much messages and the 
speed-up is low. 

 

This plane division is needed 
to perform a 3D FFT on it. 
This 3D FFT is accomplished 
by performing 1D FFTs in 
each of the three Cartesian 
directions. The 1D FFTs in 
the x and y directions can be 

1CQY

0

1000

2000

3000

4000

5000

6000

7000

8000

32 64 128 256 512

CPUs

R
ea

l t
im

e 
(s

ec
s)

2HVM

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

32 64 128 256

CPUs

R
ea

l t
im

e 
(s

ec
s)

1GND

0

2000

4000

6000

8000

10000
12000

14000

16000

18000

20000

32 64 128 512

CPUs

R
ea

l t
im

e 
(s

ec
s)

 
Figure 4: Timings for the simulation of the different solvated proteins with Amber. It is clear that the 
program scale until 64 processors only. The ideal scaling line is also drawn. 
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performed locally, but for the z direction, the grid must be transposed across the 
processors, and this transposition is the only work that will not scale in a desirable way 
with increasing processors. 

Further scaling can be achieved by breaking planes in half and assigning adjacent half 
planes to adjacent processors. 

Another optimization in the calculus when we have a large number of processors is the 
concurrent calculus of the direct and reciprocal sum. Because these two sums are 
independent, we can split the processors in two groups, one for the computing of the 
direct sum and another for the execution of the reciprocal sum. The partition sized can 
be determined by trial and error using short test runs, and when the division is 
determined further redistributions of processors will not be necessary. This parallelism 
method is also advantageous when we have a high latency network because we reduce 
the number of processors that must communicate between themselves. Although the 
total data sent is almost the same, the number of messages is considerably smaller, thus 
reducing the time used waiting for data to arrive. 

The benchmarks for Amber give the timings shown in Figure 4. The speedups can be 
seen in Figure 5. 

NAMD 
NAMD team is proud to announce that their code scales to hundreds of processors on 
high-end parallel platforms, and the benchmarks executed gives a quite good 
performance [8]. 

As said in the serial description, NAMD’s source code is written in C++ and uses the 
Charm++ library for the parallelization. Charm++ is written on top of MPI, which 
makes it portable across a wide range of computers. Parallelization in NAMD code is 
achieved by distributing the atoms across the processors as evenly as possible [9]. 

NAMD uses a way of decomposition that easily generates the large amount of 
parallelism needed to occupy thousands of processors. Charm++ parallel objects and 
data-driven execution adaptively overlaps communication and computation, hiding 
communication latencies. In Charm++, objects may migrate between processors at 
runtime. This migration is controlled by the Charm++ load balancer. 
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The simulation cell is divided in a three-dimensional grid, having each grid element the 
cutoff size necessary that only the 26 nearest grid elements are needed to evaluate the 
bonded, van der Waals and short-range electrostatic interactions. Once we have the 
simulation cell divided, we distribute each grid element to a processor, along with a 
(roughly 14 times) larger number of compute objects (one for each pair of neighboring 
grid elements) for the calculus, grouping compute objects responsible for the same grid 
element together on the same processor. The hydrogen atoms are always assigned to the 
same grid element as the atom they are related to. When there are more grid elements 
than processors, which is the common case, nearby grid elements are assigned to the 
same processor in order to avoid unnecessary network communication. 

But in the case that we have more processors than grid elements, we can generate more 
parallelism through options that double the number of patches in one or more 
dimensions. 

The atom-grid element mapping is re-evaluated at regular intervals to adapt to the new 
shape of the molecules. 

When the simulation begins, grid elements are distributed according to a recursive 
bisection scheme. After the simulation run for several time-steps the program trigger the 
initial load balancing which is the most aggressive. After this initial load balancing only 
small refinements are made. Two more cycles of load balancing follow immediately, 
after which load balancing occurs periodically to maintain load balance. 
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Figure 6: Timings for the simulation of the different solvated proteins with NAMD. It is clear that the 
program scale quite well. The ideal scaling line is also drawn. 
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Benchmarks executed by 
NAMD authors suggests that 
the limits of NAMD’s 
parallel scalability are mainly 
determined by atom count, 
with one processor per 1000 
atoms being a conservative 
estimate for good efficiency. 
But it is obvious than with a 
high number of atoms, the 
scaling will be much better 
because each grid element 
will be able to compute more 
with less communication, 

being this estimation a lower limit in the atom number to obtain good efficiency. 

 

Also, increased cutoff distances can have an effect on scaling as the number of grid 
elements is smaller. 

PME is the most time-consuming calculus in the simulation with NAMD, and the 
reciprocal sum is the main point, like in the other programs. The reciprocal sum is 
currently parallelized only to the size of the PME grid. But the interleaving of 
computation and communication provided by the Charm++ framework allows NAMD 
to compute the direct sum while waiting for the data needed to compute the reciprocal 
sum, effectively hiding the network latency. 

The benchmarks for NAMD give the timings shown in Figure 6. 

Benchmark results 
Given the benchmarks results, it seems quite clear that NAMD is one of the codes that 
scale better and scaling to up to 1000 processors will be tested in future benchmarks for 
systems containing more than 100000 atoms. Amber shows an important performance 
loss when scaling to more than 64 processors, mainly due to the work distribution in the 
reciprocal sum of the PME calculation. As explained before, using more processors than 
the number of planes in which the simulation cell is sliced gives no speed up and in fact 
leads us to absolute increases in the CPU time (see Figure 4). 

NAMD can keep up its performance because the high number of work units that are 
generated for each simulation cell, so a better load balancing can be performed, 
alleviating the problem of having not-working processors waiting for the others to 
finish. 

Finally, Gromacs has not been tested, but taking into account the method used to 
distribute data across the processors, which is quite similar to the method used by 
Amber, I will bet for an Amber-like behavior. Gromacs is obviously limited by the 
spatial decomposition, and if there are more processors than work slices, they will not 
be able to do any work and will remain idle. 

Despite this results, more analysis are being carried on to determine the efficiency of the 
different programs. Is it clear how the programs behave out-of-the-box, but it is not 
clear if we can get better results in Mare Nostrum or if we are working at full speed. 
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Suggestions for development 
The performance of “grand challenges” simulations require of very fast and parallel 
codes. Pmemd behaves well for a small number of processors and is then useful for 
massive projects like Model but not for single very long runs due to its very poor 
performance for more than 64 processors. NAMD scales very well, but at the expense 
of a smaller single-processor performance, and of the smaller stability of the integrator 
(often shorter integration steps than Pmemd need to be used). An additional 
shortcoming of NAMD is the scarce possibilities of the code when a non-standard 
simulation is planned (for example the code is not ready to perform free energy 
calculations other than those derived from steered MD simulations. GROMACS has the 
best per-processor performance, but its behavior in heavily parallel machines like MN is 
not recommended due to the existence of spurious errors. It is suggested that effort 
should be made in tracing the executions of NAMD and Amber to get efficiency data 
and improvement suggestions. With data from traced executions we can decide if we 
must try to improve the serial execution time of NAMD or try to improve the Amber 
scalability.
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