
J.Camps BSC-INB Technical Report 1/25/2007�

1�

TECHNICAL REPORT 2

BSC-INB

COMPUTATIONAL BIOLOGY PROGRAM

Jordi Camps (BSC-INB)

J.Camps BSC-INB Technical Report 1/25/2007�

2�

Molecular Dynamics simulations on Mare Nostrum
Jordi Camps. Barcelona Supercomputing Center-Centro Nacional de Supercomputación
(Spain) jordi.camps@bsc.es

Abstract
This report presents a benchmark of three programs more commonly used for molecular
dynamics simulations, with special emphasis on their behavior in parallel machines like
Mare Nostrum.

Introduction
Molecular dynamics (MD) is a technique first developed in the middle seventies and
applied to the protein world in the late nineties. The theoretical basis of MD is anchored
in the basic rules of classical mechanics and the works of Newton and Langevin. The
objective of MD is to reproduce a time-trajectory of the structure of a molecule, in our
case protein. This is done by numerical integration of the equations of motion for a
system whose interactions are defined by a simple atomic force-field like that shown in
eqs 1-3. A standard MD step starts with the evaluation of the potential energy (eqs 1-3).
Analytical derivation of the potential energy leads the forces acting on each atom,
which using Newton’s second law provides the acceleration. Integration of the
accelerations yields new velocities, whose integration provides the new positions,
completing then the integration step.

E=Ebonded +Enon− bonded (1)

()()ξiφ+V+)θ(θK+)l(lK=E
torsions =i

i

angles
s

bonds
sbonded −−− ∑ ∑∑∑ cos1

2

3

1

2
0

2
0 (2)

Enon−bonded =
612

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑∑

ab

ab

ba, ab

ab

ba, ab

ba

r
D

r
C

+
r
QQ

 (3)

where l and θ stands here for bond lengths and angles, with subscript 0 for equilibrium
values, Ks and Kb the associated force constants; Φ are torsion angles, Vi are the
potentials associated with the Fourier terms used to represent torsions, ξ is the phase
angle, Q are atomic charges, C and D denote the van der Waals parameters, and rab
stands for interatomic distance.

For stability reasons the integration step needs to be shorter than the faster movement in
the system, which forces us to use integration steps in the femtsecond range. This means
that to collect 1 nanosecond of trajectory we need to perform 1 million integrations and
a billion to collect a millisecond.

The cost of a MD simulation depends mostly on three considerations:

• The size of the system: larger the system greater the number of interactions and
accordingly the cost of the simulation. Standard systems studied now are in the
range of 10-20000 atoms. Some simulations have been reported for larger systems
(around 100000 atoms) and a few groups have reported simulations for even bigger

J.Camps BSC-INB Technical Report 1/25/2007�

3�

systems like membranes, ribosomes,…, approaching 1 million atoms (the counting
considers always both macromolecule and solvent atoms).

• The simulation conditions: different technicalities have a direct influence in the
cost of the calculation. The “rule of thumb” is that as we make simulation
conditions closer to the biological environment calculation is more expensive. The
current “state of the art” is to simulate the system under the constraints of constant
pressure and temperature, using large boxes of solvent periodically reproduced in
the space. Fast versions of Ewald’s method are used to represent distant interactions
out of the primary interaction cell. Integration steps of 1 fs (for some integrators 2
fs) are used.

• Length of the trajectory: First MD simulations were done in the picosecond time
scale. Current “state of the art” for 10-20000 atoms is in the 10-50 ns range. A few
simulations have been reported in the range of 100 ns and the microsecond time
scale can be considered a “grand challenge” accessible only for a few groups in the
world. To reach the 10 ns is a major effort involving years of CPU for larger
systems (100000 to 1 million atoms). Considering that most biological processes
happen in the millisecond time scale is clear that the MD community leads
computers at least 3 orders of magnitude faster than current ones.

The development of MD codes started in the late seventies and many human-years of
work are behind these codes, which in fact contain many other functions than the simple
MD calculation. The first code developed was CHARMM, originated by the work of
Karplus’s group. Almost simultaneously was the development of GROMOS by van
Gunsteren and coworkers. A few years later Kollman’s group developed the first
versions of AMBER and former van Gunsteren’s students developed GROMACS, the
first program developed thinking specifically on computer efficiency. More recently
K.Schulten’s group developed NAMD by rewriting from scratch existing codes
searching in this case for better parallelism. All the groups developing codes also
created their own force-field by fitting equations to experiments of high level quantum
mechanical data. This is the case of CHARMM-force-field developed by Karplus’s
group, GROMOS-force-field by van Gunsteren’s group and AMBER-force-field by
Karplus’s group. These and the OPLS force-field developed by Jorgensen and
coworkers are considered the most powerful ones for the study of proteins.

In a recent work we performed a systematic comparison of force-fields in the study of
equilibrium dynamics of proteins [16]. Here we became interested in the study of
computational performance of three of the most used second-generation computer
programs: GROMACS, NAMD and AMBER. In particular we explored the serial
performance (single processor runs) and the parallel performance in Mare Nostrum
computer.

Benchmarking the simulators
It is obvious that serial performance in this kind of programs is important, but parallel
performance and scalability are the real crucial point when the program is going to be
used in a massive parallel machine like Mare Nostrum.

In the Barcelona Supercomputing Center we have been working with three widely used
simulation program suites. All of them can work in serial and parallel versions:

• Amber v8 [1]
• NAMD v2.6 [2]

J.Camps BSC-INB Technical Report 1/25/2007�

4�

• Gromacs v3.2.1 [3, 11]

To perform the benchmark we selected three proteins of different size with PDB codes
1CQY [4] (starch binding domain of bacillus cereus beta-amylase), 2HVM [5]
(Hevamine A) and 1GND [6] (guanine nucleotide dissociation inhibitor, alpha-isoform).

The sizes of the systems (see Table 1) cover the range of small to large proteins:

Protein Protein residues Protein atoms Total atoms
1CQY 99 1038 28310
2HVM 273 2701 31550
1GND 430 4342 66213

Table 1: Sizes of the systems used as input to the simulators that we are benchmarking

All trajectories were collected using “state of the art” simulation conditions using
periodic boundary conditions with Particle Mesh Ewald technique to reproduce long
range electrostatic effects and keeping constant pressure and temperature [16].

Serial performance
The first MD codes were developed with a serial approach because no parallel facilities
were easily available. Some of them were later ported to a parallel environment, like
Amber and Gromacs. NAMD was created having a parallel environment as the main
scenario where it would execute.

Gromacs
The Gromacs program suite is a comprehensive collection of preparation, simulation
and analysis programs. They follow the UNIX philosophy of many small and
specialized utilities which achieve their objective when working together.

Gromacs was written using C [15], and the effort during development was in the speed
and performance of the serial execution.

We can have the simulator compiled in four different ways depending upon it works
with single precision floating point operations or double precision floating point
operations and also if the code is compiled to work in serial or in parallel.

There have been important efforts to speed up the most costly calculus of the
simulation, adapting the code specifically for different architectures. The inner loops
have been heavily optimized, having assembly code for x86, Alpha and PowerPC
platforms.

Working with single precision floating point operations, the code can be vectorized by
the hardware of some current processors, speeding up some operations. But these loops
are only available in single precision mode. When double precision floating point
operations are performed, the data is too big to fit into the registers in a useful way and
the vectorization is not available, thus offering a quite worst performance.

Amber
The Amber program suite comprises utility programs for the preparation of the input
files, programs for the simulation, programs to analyze the results and also a program
specially created to maximize the performance of the simulation when the simulation
parameters meets certain requirements.

J.Camps BSC-INB Technical Report 1/25/2007�

5�

Pmemd (the new Amber simulator engine) has been written using Fortran-90 [12],
while the original simulator (called sander) was written using an older version of the
Fortran standard, Fortran-77 [13]. Pmemd was created to speed up MD simulations
under Particle Mesh Ewald periodic boundary conditions which was prohibitively slow
in the old sander module of AMBER.

Pmemd is a kind of sander rewriting from scratch. The new language allows the
developers to use improved data structures and dynamic memory allocation, which
makes the program lighter. The direct force evaluation code has been also rewritten,
resulting in a code which uses considerably less memory. It has been programmed
trying to repeatedly use the data which have some kind of locality, thus rising the cache
hit ratio and therefore, reducing the time needed by a simulation.

NAMD
The NAMD program suite itself is the smallest suite of the three molecular dynamics
suites that we are analyzing now. It contains only the main simulator and a few utilities
to prepare the inputs for simulation.

The analysis and visualization of the results are done using other utilities from the same
research group, like VMD and BioCoRE.

NAMD has been developed using C++ [14], but having a workstation’s cluster as the
natural execution environment of the simulator, hence a parallel communications library
is used in the core and an appropriate object definition suitable for distributing the work
across the processors. This architecture is also valid when we are using only one
processor because the only difference is that the communications are local and do not
have any latency, just the time to copy the data in-memory.

There are some approximations applied to speed up the algorithm:

• Use of three levels of integration loops:
o Inner loop: bonded forces
o Middle loop: Lennard-Jones and short-range electrostatic forces
o Outer loop: long-range electrostatic forces

The forces on the outer loop vary slower than the forces in the inner loop, so seems
natural to compute the forces on the outer loop less frequently than the forces in the
inner loop.

This approach reduces the amount of operations needed along the simulation while
maintaining a high level of accuracy.

• SPME: Smooth Particle Mesh Ewald. It is a refinement of the original PME
method that uses B-splines to approximate the forces on the atoms. The
continuity of B-splines functions and their derivatives makes the analytical
expression of forces easy to obtain and reduces the number of FFTs by half
compared to the original method.

Serial performance
Benchmarks for the serial version are shown in Figure 1. It must be noted that all the
metrics obtained and used in this report involve only the total time used by the
application since the beginning until the end of the program (also known as wall clock
time). No conclusions about the efficiency of the codes can be derived from this data.

J.Camps BSC-INB Technical Report 1/25/2007�

6�

Amber-SANDER programs are the slowest in serial execution, with small gains with
pmemd over sander, specially over bigger systems.

NAMD has similar timings to the Amber-SANDER ones. It is faster than pmemd in all
cases but its performance is not extremely good.

Gromacs is the clear winner of the
benchmark. Its timings are two or three
times faster than its competitors. This
fact is probably due to the different
goals that the developers had in mind.
Amber and NAMD developers tried to
make their code parallel and scalable,
paying special attention to the
parallelization methods and
communications overhead. On the other
hand, Gromacs developers has focused
on implementing the serial routines in
the quickest way, devoting so many
time to the optimization of the internal
loops, where the code spends most of

its time. They do not only optimized their code in an algorithmical way, they get down
to the assembly level in order to codify specialized loops for every architecture, getting
an instruction pipeline with a very low number of stalls and idle cycles.

Code parallelization
Serial code is the basis for the posterior parallelization. A given serial code can be fast
or slow, and the parallelization difficulty usually changes with the code efficiency: a
faster code means a greater synchronization/computing ratio.

The different programs have chosen different parallelization strategies which state
clearly that there is no consensus on the best methodology to use in order to partition
the same problem in calculable partitions.

Now I will explain how the different simulators addressed this problem and which have
been the problems that aroused with each decision.

Gromacs
Gromacs was created having low-cost computers in mind. This means that they do not
rely on having neither fast networks nor full interconnection schemes between the
processors. The basis for its intercommunication paradigm was the assumption of a ring
topology [10]. They choose this topology because a ring can always be mapped onto a
more general interconnection scheme like a hypercube or a tree, and in the case we do
not have expensive hardware, this topology can also be used.

Because of each element of the ring has only two neighbors, left and right, it was
decided that the better decomposition that can be used was to decompose the simulation
cell along the X axis, slicing it and assigning each slice to a processor. This kind of
decomposition has advantages over particle decomposition, like the easiness of load
balancing, which is very useful in order to obtain a good scaling factor. But one of the
disadvantages of this approach is that the parallelism depends on the input shape.

1CQY 2HVM 1GND

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

Sander
Pmemd
NAMD
GromacsSe

co
nd

s

Figure 1: Timings of the different codes
running on one processor

J.Camps BSC-INB Technical Report 1/25/2007�

7�

This data distribution scheme
needs every processor being aware
of the coordinates for all the
particles all the time while
distributing the forces back to the
other processors. The velocities are
kept on the “home processor” of
each particle, and the fixed
interaction lists (for bonded
interactions, angles, dihedrals…)
are also kept on a single processor,
provided that care is taken that
every processor gets a similar
amount of bonded interactions.

Another parallelization used in
some parts of the code is the one
related to the FFT calculus. It is
performed through the FFTW
library, which uses MPI to
parallelize the calculus.

This decision is against the
original idea of permitting only
have a physical ring topology
because the FFTW library is not
restricted to use only a ring
topology. In that case, the
underlying MPI implementation
will have to take care of the
messages addressed to processors
which are not the neighbors of the
sending processor in a ring
topology, having an important
performance impact and increased
network usage.

We ran some tests with this simulator, identifying some incoherent results compared
with other simulations. This can be seen in Figure 2 and 3, which show artifactual
trajectories in GROMACS due to a sharp transition to unfolded structures of proteins
after 1 nanosecond (note the large jump in root mean square deviation in Fig 1), when
the protein is found stable with other programs (see AMBER profile in Fig. 2). Analysis
of the trajectories discarded the existence of force-field artefacts, since while OPLS-
simulations performed in NAMD behave well, those performed in GROMACS unfold
the structure. The error reported in Figure 2 was found for all the proteins in our
MICROMODEL database (see data at http://www.bsc.es/). The time of the trajectory
where corruption appears is stochastic (the same simulation performed twice is
corrupted at different points) and depends on the number of processors: larger the
number sooner the corruption.

These results lead us towards an issue with the parallelization code, but at this point the
reasons for the stochastic behaviour of parallel versions of GROMACS in Mare
Nostrum are unclear, since recompilation was carefully done and all tests and

Figure 2: RMSd plot (nm vs. ps) of a simulation made with
Gromacs applying the G43a1 force field.

Figure 3: RMSd plot (nm vs. ps) of a simulation made with
Amber applying the Amber force field.

J.Camps BSC-INB Technical Report 1/25/2007�

8�

benchmarks were successfully passed. In any case MN users are strongly encouraged to
check carefully trajectories collected with parallel version of GROMACS 3.2.1.

Amber
There is a little more information referring to the parallelization methodology used in
sander (the main simulator) and pmemd (the specialized simulator) than to the serial
code.

Amber was first parallelized for the hardware found in CRAY T3D and T3E.
Extensions to support other architectures were added later, including a general Message
Passing implementation.

Parallelization in Amber works using a replicated data approach [7]. This is a flexible
method, but suffers from communications overhead when collecting and broadcasting
coordinates and forces for the entire system to all processors at each step.

Because most of the time is spent in the non bonded interactions and the Particle Mesh
Ewald (PME) algorithm, hence the main effort has been directed to this area.

In the Ewald method, the sum of Coulomb’s Law terms is expanded into several sums:

E �electrostatic�=E�direct �+E �reciprocal �+E�correction�
E �direct � is identical to the sum used with the cutoff method. E �reciprocal � depends

on a discrete Fourier transform and E �correction� serves the purpose of eliminating
the terms that has been double-summed in the reciprocal calculus.

J.Camps BSC-INB Technical Report 1/25/2007�

9�

The direct sum can be computed in each processor once the atom pair list is generated.
The simulation box is divided in subcells so that their dimension is at least 1/3 of the
cutoff distance. Although the search part of the list building scales perfectly, the setup
of the subcells does not. Each processor executes the direct sum on its portion of the
pair list and stores the resulting energy and forces locally. Global summing is done after
all other contributions. The reciprocal sum needs much more effort. The entire
reciprocal energy and force calculation is distributed by dividing the charge grid into
equal parts for each processor. The constraint was to limit the breakdown of the grid to

xy planes. This limits the scaling to the number of planes. If we have a simulation box
of dimensions 60x60x60Å and a charge grid of the 60x60x60, the space is divided in 60
planes, and using more than 60 processors give no speed up because the extra
processors above 60 remain idle. The best performance is obtained when using 20 or 30
processors, because using 60 processors needs to communicate much messages and the
speed-up is low.

This plane division is needed
to perform a 3D FFT on it.
This 3D FFT is accomplished
by performing 1D FFTs in
each of the three Cartesian
directions. The 1D FFTs in
the x and y directions can be

1CQY

0

1000

2000

3000

4000

5000

6000

7000

8000

32 64 128 256 512

CPUs

R
ea

l t
im

e
(s

ec
s)

2HVM

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

32 64 128 256

CPUs

R
ea

l t
im

e
(s

ec
s)

1GND

0

2000

4000

6000

8000

10000
12000

14000

16000

18000

20000

32 64 128 512

CPUs

R
ea

l t
im

e
(s

ec
s)

Figure 4: Timings for the simulation of the different solvated proteins with Amber. It is clear that the
program scale until 64 processors only. The ideal scaling line is also drawn.

32 64 128 256 512

0

2

4

6

8

10

12

14

16

Amber Speed-ups

Ideal speedup
1CQY
2HVM
1GND

Number of processors

S
pe

ed
-u

p

J.Camps BSC-INB Technical Report 1/25/2007�

10�

performed locally, but for the z direction, the grid must be transposed across the
processors, and this transposition is the only work that will not scale in a desirable way
with increasing processors.

Further scaling can be achieved by breaking planes in half and assigning adjacent half
planes to adjacent processors.

Another optimization in the calculus when we have a large number of processors is the
concurrent calculus of the direct and reciprocal sum. Because these two sums are
independent, we can split the processors in two groups, one for the computing of the
direct sum and another for the execution of the reciprocal sum. The partition sized can
be determined by trial and error using short test runs, and when the division is
determined further redistributions of processors will not be necessary. This parallelism
method is also advantageous when we have a high latency network because we reduce
the number of processors that must communicate between themselves. Although the
total data sent is almost the same, the number of messages is considerably smaller, thus
reducing the time used waiting for data to arrive.

The benchmarks for Amber give the timings shown in Figure 4. The speedups can be
seen in Figure 5.

NAMD
NAMD team is proud to announce that their code scales to hundreds of processors on
high-end parallel platforms, and the benchmarks executed gives a quite good
performance [8].

As said in the serial description, NAMD’s source code is written in C++ and uses the
Charm++ library for the parallelization. Charm++ is written on top of MPI, which
makes it portable across a wide range of computers. Parallelization in NAMD code is
achieved by distributing the atoms across the processors as evenly as possible [9].

NAMD uses a way of decomposition that easily generates the large amount of
parallelism needed to occupy thousands of processors. Charm++ parallel objects and
data-driven execution adaptively overlaps communication and computation, hiding
communication latencies. In Charm++, objects may migrate between processors at
runtime. This migration is controlled by the Charm++ load balancer.

J.Camps BSC-INB Technical Report 1/25/2007�

11�

The simulation cell is divided in a three-dimensional grid, having each grid element the
cutoff size necessary that only the 26 nearest grid elements are needed to evaluate the
bonded, van der Waals and short-range electrostatic interactions. Once we have the
simulation cell divided, we distribute each grid element to a processor, along with a
(roughly 14 times) larger number of compute objects (one for each pair of neighboring
grid elements) for the calculus, grouping compute objects responsible for the same grid
element together on the same processor. The hydrogen atoms are always assigned to the
same grid element as the atom they are related to. When there are more grid elements
than processors, which is the common case, nearby grid elements are assigned to the
same processor in order to avoid unnecessary network communication.

But in the case that we have more processors than grid elements, we can generate more
parallelism through options that double the number of patches in one or more
dimensions.

The atom-grid element mapping is re-evaluated at regular intervals to adapt to the new
shape of the molecules.

When the simulation begins, grid elements are distributed according to a recursive
bisection scheme. After the simulation run for several time-steps the program trigger the
initial load balancing which is the most aggressive. After this initial load balancing only
small refinements are made. Two more cycles of load balancing follow immediately,
after which load balancing occurs periodically to maintain load balance.

1 C Q Y

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

3 2 6 4 1 2 8 2 5 6 5 1 2

C P U s

R
ea

l t
im

e
(s

ec
s)

2 H V M

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

3 2 6 4 1 2 8 2 5 6 5 1 2

C P U s

R
ea

l t
im

e
(s

ec
s)

1GND

0

1000

2000

3000

4000

5000

6000

7000

8000

32 64 128 256 512

CPUs

R
ea

l t
im

e
(s

ec
s)

Figure 6: Timings for the simulation of the different solvated proteins with NAMD. It is clear that the
program scale quite well. The ideal scaling line is also drawn.

J.Camps BSC-INB Technical Report 1/25/2007�

12�

Benchmarks executed by
NAMD authors suggests that
the limits of NAMD’s
parallel scalability are mainly
determined by atom count,
with one processor per 1000
atoms being a conservative
estimate for good efficiency.
But it is obvious than with a
high number of atoms, the
scaling will be much better
because each grid element
will be able to compute more
with less communication,

being this estimation a lower limit in the atom number to obtain good efficiency.

Also, increased cutoff distances can have an effect on scaling as the number of grid
elements is smaller.

PME is the most time-consuming calculus in the simulation with NAMD, and the
reciprocal sum is the main point, like in the other programs. The reciprocal sum is
currently parallelized only to the size of the PME grid. But the interleaving of
computation and communication provided by the Charm++ framework allows NAMD
to compute the direct sum while waiting for the data needed to compute the reciprocal
sum, effectively hiding the network latency.

The benchmarks for NAMD give the timings shown in Figure 6.

Benchmark results
Given the benchmarks results, it seems quite clear that NAMD is one of the codes that
scale better and scaling to up to 1000 processors will be tested in future benchmarks for
systems containing more than 100000 atoms. Amber shows an important performance
loss when scaling to more than 64 processors, mainly due to the work distribution in the
reciprocal sum of the PME calculation. As explained before, using more processors than
the number of planes in which the simulation cell is sliced gives no speed up and in fact
leads us to absolute increases in the CPU time (see Figure 4).

NAMD can keep up its performance because the high number of work units that are
generated for each simulation cell, so a better load balancing can be performed,
alleviating the problem of having not-working processors waiting for the others to
finish.

Finally, Gromacs has not been tested, but taking into account the method used to
distribute data across the processors, which is quite similar to the method used by
Amber, I will bet for an Amber-like behavior. Gromacs is obviously limited by the
spatial decomposition, and if there are more processors than work slices, they will not
be able to do any work and will remain idle.

Despite this results, more analysis are being carried on to determine the efficiency of the
different programs. Is it clear how the programs behave out-of-the-box, but it is not
clear if we can get better results in Mare Nostrum or if we are working at full speed.

32 64 128 256 512

0

2

4

6

8

10

12

14

16

NAMD Speed-ups

Ideal speedup
1CQY
2HVM
1GND

Number of processors

S
pe

ed
-u

p

J.Camps BSC-INB Technical Report 1/25/2007�

13�

Suggestions for development
The performance of “grand challenges” simulations require of very fast and parallel
codes. Pmemd behaves well for a small number of processors and is then useful for
massive projects like Model but not for single very long runs due to its very poor
performance for more than 64 processors. NAMD scales very well, but at the expense
of a smaller single-processor performance, and of the smaller stability of the integrator
(often shorter integration steps than Pmemd need to be used). An additional
shortcoming of NAMD is the scarce possibilities of the code when a non-standard
simulation is planned (for example the code is not ready to perform free energy
calculations other than those derived from steered MD simulations. GROMACS has the
best per-processor performance, but its behavior in heavily parallel machines like MN is
not recommended due to the existence of spurious errors. It is suggested that effort
should be made in tracing the executions of NAMD and Amber to get efficiency data
and improvement suggestions. With data from traced executions we can decide if we
must try to improve the serial execution time of NAMD or try to improve the Amber
scalability.

J.Camps BSC-INB Technical Report 1/25/2007�

14�

References
[1] Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham III, T.

E., BeBolt, S., Ferguson, D., Seibel, G., and Kollman, P. (1995). AMBER, A
package of Computer Programs for Applying Molecular Mechanics, Normal Mode
Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the
Structural and Energetic Properties of Molecules, Computer Physics
Communications, 91, 1, 3:1-41.

[2] Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.;
Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K.; (1999). J. Comp. Phys.,
151, 283.

[3] E. Lindahl and B. Hess and D. van der Spoel. GROMACS 3.0: A package for
molecular simulation and trajectory analysis. J. Mol. Mod. 7 (2001) pp. 306-317

[4] Yoon, H.J., Hirata, A., Adachi, M., Sekine, A., Utsumi, S., Mikami, B.
Structure of Separated Starch-Binding Domain of Bacillus cereus B-amylase. To be
published

[5] Terwisscha van Scheltinga, A.C., Hennig, M., Dijkstra, B.W. The 1.8 Å
resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the
conserved sequence and structure motifs of glycosyl hydrolase family 18. J. Mol.
Biol. v262 pp. 243-257, 1996

[6] Schalk, I., Zeng, K., Wu, S.K., Stura, E.A., Matteson, J., Huang, M., Tandon,
A., Wilson, I.A., Balch, W.E. Structure and mutational analysis of Rab GDP-
dissociation inhibitor. Nature v381 pp.42-48, 1996

[7] Crowley, M.; Darden, T.; Cheatham III, T.; Deerfield II, D. (1997). Adventures
in Improving the Scaling and Accuracy of a Parallel Molecular Dynamics Program.
The Journal of Supercomputing. Vol. 11, number 3, pp. 255-278

[8] M. Bhandarkar, R. Brunner, C. Chipot, A. Dalke, S. Dixit, P. Grayson, J.
Gullingsrud, A. Gursoy, D. Hardy, J. Hénin, W. Humphrey, D. Hurwitz, N. Krawetz,
S. Kumar, M. Nelson, J. Phillips, A. Shinozaki, G. Zheng, F. Zhu. (2006) NAMD
User’s Guide, Version 2.6

[9] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C,
Skeel RD, Kale L, Schulten K. Scalable Molecular Dynamics with NAMD. J. Comp.
Chem. 2005 Dec; 26(16):1781-802

[10] van der Spoel, D.; Lindahl, E.; Hess, B. (2006) Gromacs User Manual,
Version 3.3

[11] H. J. C. Berendsen, D. van der Spoel and R. van Drunen. GROMACS: A
message-passing parallel molecular dynamics implementation. Comp. Phys. Comm.
91 (1995) pp. 43-56

[12] Programming Language - Fortran - Extended (formerly ANSI X3.198-1992
(R1997))

[13] Programming Language FORTRAN (ANSI X3.9-1978). American National
Standard, also known as ISO 1539-1980

[14] Programming Language C++. ISO/IEC 14882:1998

[15] Programming Language C - ISO/IEC 9899:1990 Information technology

J.Camps BSC-INB Technical Report 1/25/2007�

15�

[16] Rueda, M.; Ferrer-Costa, C.; Meyer, T.; Pérez, A.; Camps, J.; Hospital, A.;
Gelpí, J. and Orozco, M. A consensus view of protein dynamics. PNAS (2007). vol.
104. no 3. (796-801)

Acknowledgements
The author thanks the help of Prof. M.Orozco and MMB group in the preparation

and analysis of trajectories. The author also thanks the help of Dr. S.Girona and Mare
Nostrum Support team in running the benchmarks. Finally the author is indebted to
Profs. J.M.Cela, J.Labarta and S.Girona for help in the analysis of the benchmarks.

