
Exposing Inner Kernels and Block Storage for

Fast Parallel Dense Linear Algebra Codes⋆

José R. Herrero⋆⋆

Computer Architecture Department
Universitat Politècnica de Catalunya

Barcelona, Spain
josepr@ac.upc.edu

Abstract. Efficient execution on processors with multiple cores requires
the exploitation of parallelism within the processor. For many dense lin-
ear algebra codes this, in turn, requires the efficient execution of codes
which operate on relatively small matrices. Efficient implementations of
dense Basic Linear Algebra Subroutines exist (BLAS libraries). However,
calls to BLAS libraries introduce large overheads when they operate on
small matrices. High performance implementations of parallel dense lin-
ear algebra codes can be achieved by replacing calls to standard BLAS
libraries with calls to specialized inner kernels which work efficiently on
small data submatrices.

Key words: Inner kernels, block storage, dense linear algebra, multi-
core.

1 Introduction

The arrival of multi-core platforms poses a challenge in their programmability.
Medium grain parallelism must be exploited within the processor. For that pur-
pose, several frameworks for dynamic scheduling of tasks in multi-core platforms
have been introduced recently [1–4]. They handle tasks which are scheduled dy-
namically. These tasks work on data submatrices which are stored as a sequence
of submatrices, typically square blocks. This approach requires efficient opera-
tion on small matrices.

1.1 New Data Structures for Parallel Dense Liner Algebra

Matrices have traditionally been stored using canonical storage, either column-
major or row-major storage. Such storage, however, can suffer from the lack
of locality for certain access patterns. This happens, for instance, when the
Cholesky factorization works on the lower triangular matrix and the matrix

⋆ This work was supported by the Ministerio de Educación y Ciencia of Spain
(TIN2007-60625).

⋆⋆ Currently on sabbatical leave at Barcelona Supercomputing Center

2 José R. Herrero

is stored column-wise (bottom curve in Figure 1). We can also observe that
the performance obtained with the traditional approach, where parallelism is
exploited only within each iteration of the factorization, does not scale well.

Poor performance is also obtained when working on matrices stored using
packed storage. Such format is interesting, however, since it allows for consider-
able reduction in the amount of space needed to store symmetric and triangular
matrices.

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Cholesky factorization on 32 Intel Itanium 2 @ 1.6GHz

MKL 9.1 (canonical Cholesky on U)
MKL 9.1 (canonical Cholesky on L)

Fig. 1. Parallel Cholesky: Tiled vs Traditional

For these reasons, a lot of work has been developed in order to introduce new
data formats based on the storage of matrices by blocks [5–12]. For symmetric
and triangular matrices such formats allow for the reduction of the storage space
required while keeping performance similar to full storage [13–16].

The use of these new formats has become commonplace since the appear-
ance of multi-core chips and new programming models which address the new
scenario [1–4]. These frameworks handle tasks which are scheduled dynamically.
In this way different iterations can be overlapped and parallelism is better ex-
ploited. These tasks work on data submatrices which are stored as a sequence
of submatrices, typically square blocks.

1.2 Overhead

In search for high performance portability, linear algebra codes call Basic Linear
Algebra Subroutines (BLAS). Within BLAS, parameters are checked to enforce
robustness and submatrices are copied in order to improve locality when the
inner kernels are executed. Since they are done for every call, this implies extra
overhead is payed when BLAS are called many times to work on relatively small
matrices.

As an example, consider the Cholesky factorization with Square Blocked
Lower Packed Format (SBPF). Figure 2 illustrates this format. Our code is

Exposing Inner Kernels and Block Storage for Fast Parallel DLA Codes 3

Fig. 2. Square Blocked Lower Packed Format (SBPF).

based on subroutine DPSTRF by F. G. Gustavson, as appears in Fig.10, page
44 in [10].

Figure 3 shows the performance of routines DPOTRF and DPSTRF on an
Intel Itanium 2 running at 1.5 GHz and using Goto’s library [17]. We can ob-
serve that as the block size used in routine DPSTRF is smaller its performance
drops. This is due to the overhead introduced by calling BLAS routines multiple
times on smaller matrices instead of having a few calls which work on larger
submatrices.

Fig. 3. Performance of Cholesky factorization for several block sizes using Goto’s li-
brary.

In this paper, we show that the use of specialized inner kernels which have
low overhead combined with a framework for dynamic scheduling of tasks can
provide excellent performance.

4 José R. Herrero

2 Specialized inner kernels

The efficiency of the inner kernels is of paramount importance. For this reason
such kernels are usually ad-hoc codes written in assembler for each platform.
Our approach, however, is different. In previous papers [18, 19] we presented
our work on the creation of a Small Matrix Library (SML): a set of routines,
written in Fortran, specialized in the efficient operation on matrices which fit in
the first level cache. The advantage of our method lies in the ability to generate
very efficient inner kernels by means of an optimizing compiler. Working on
regular codes for small matrices, most of the compilers we have used in different
platforms create very efficient inner kernels for regular codes such as the matrix-
matrix multiplication.

2.1 Creation of inner kernels

Our approach to the creation of high performance specialized kernels consists
in:

– Profiling: Optimization efforts must be applied to those parts of code which
take up most computation time. In this case, for instance, this means focusing
on the optimization of the matrix-matrix multiplication routine first.

– Specialization: Simplify code to do only what is strictly necessary. Simple
codes are easier to optimize, both automatically and manually.

– Bottom-up creation of data structure: We drive the creation of the structure
from the bottom: the inner kernel fixes the size of the data submatrices [20].
Then the rest of the data structure is produced in conformance. We do this
because the performance of the inner kernel has a dramatic influence in the
overall performance of the algorithm.

2.2 Practical application

Applying this approach to the Cholesky factorization we first create the inner
kernel for the matrix multiplication operation (GEMM). Once the block size
is already fixed we apply the same approach to the other operations (TRSM,
SYRK, and POTRF). We use the resulting routines, which we store within the
SML, as the inner kernels of our general linear algebra codes.

2.3 Low Overhead

When these kernels are called directly from linear algebra codes which store
matrices using non-canonical data structures the overhead is very low. This
happens because there are no costs associated to copying data and checking
certain parameters. Resulting codes can avoid most of the overhead and have
high performance.

Exposing Inner Kernels and Block Storage for Fast Parallel DLA Codes 5

In [16], Herrero shows that the performance obtained from the resulting se-
quential Cholesky factorization approaches that of a hand-optimized implemen-
tation in which most representative parts of the code are written in assembly
code (Goto BLAS). In the following sections we show results when our SML is
used in a code parallelized with SMPSs.

3 Parallelization of a Cholesky factorization with SMPSs

We needed a flexible way to parallelize our code and overlap different iterations
of the Cholesky factorization. Thus, we have parallelized our code using SMP
Superscalar (SMPSs) [4]. SMPSs is a programming environment for multi-core
chips and Symmetric Multiprocessors (SMP) in general. It is based on function
level parallelism. An SMPSs program is a sequential program annotated with
directives which identify functions in the code that are candidates to be run in
parallel. These are called tasks and are treated as the unit of parallel computa-
tion. Function (task) annotations include information about the parameters and
their directionality. In this way, the programmer indicates which functions can
be run in parallel and which data they will use.

At execution time SMPSs builds a Task Dependency Graph (TDG) based
on data dependencies. The framework schedules tasks dynamically according to
the TDG which is a directed acyclic graph. More information about SMPSs can
be retrieved from [21].

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Cholesky factorization on 32 Intel Itanium 2 @ 1.6GHz

SMPSs (tiled Cholesky on U)
SMPSs (tiled Cholesky on L)
MKL 9.1 (canonical Cholesky on U)
MKL 9.1 (canonical Cholesky on L)

Fig. 4. Parallel Cholesky: Tiled vs Traditional

Figure 4 shows the performance obtained for different versions of the Cholesky
factorization on a machine with 16 dual core Intel Itanium 2 processors with a
total of 32 cores. Each core runs at 1.6 GHz and can perform four floating point
operations per cycle. Thus, the theoretical peak for the machine is 204.8 GFlops.

6 José R. Herrero

Our Cholesky factorization uses SMPSs on matrices stored as contiguous
square blocks with data stored row-wise within those blocks. We have used rou-
tine DPOTRF in version 9.1 of Intel Math Kernel Library (MKL) as a represen-
tative of the traditional way to parallelize linear algebra codes in which matrices
are stored using canonical format and iterations are not overlapped.

We can observe that the parallelization with SMPSs was very effective. This
is mainly due to the possibility to overlap different iterations of the Cholesky
factorization, which helps in keeping the cores busy, together with the improved
locality of the block storage. Note that this code does not suffer any performance
drop when working neither on the lower (L) nor the upper (U) submatrix, while
this is often the case in traditional codes which work on canonical storage.

4 Results

Figure 5 shows the performance obtained on 32 Itanium 2 cores running at 1.6
GHz for the dense Cholesky factorization parallelized using SMPSs where the
matrix is stored by blocks. Each curve shows the performance obtained when
the underlying BLAS library used was either Intel’s MKL or our SML. We can
observe that the latter provides larger performance due to the good performance
and lower overhead of our specialized inner kernels.

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Cholesky factorization on 32 Intel Itanium 2 @ 1.6GHz

SMPSs Cholesky (SML)
SMPSs Cholesky (MKL)

Fig. 5. Performance of Cholesky factorization using MKL and SML.

The following two figures show the influence of tile size (TS) for different
matrix dimensions when MKL (Figure 6) and SML (Figure 7) are used. We can
observe that the behavior is similar in both cases. Small tile sizes can benefit
matrices with dimensions up to around 3000 since they expose more parallelism.
For larger matrix dimensions, however, the overhead of operating with such small
tiles is too large. Then, larger block sizes suffer less overhead while exposing
enough parallelism.

Exposing Inner Kernels and Block Storage for Fast Parallel DLA Codes 7

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Cholesky factorization on 32 Intel Itanium 2 @ 1.6GHz

SMPSs Cholesky (MKL TS=360)
SMPSs Cholesky (MKL TS=300)
SMPSs Cholesky (MKL TS=240)
SMPSs Cholesky (MKL TS=180)
SMPSs Cholesky (MKL TS=120)

Fig. 6. Performance of Cholesky factorization per tile size using MKL.

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Cholesky factorization on 32 Intel Itanium 2 @ 1.6GHz

SMPSs Cholesky (SML TS=360)
SMPSs Cholesky (SML TS=300)
SMPSs Cholesky (SML TS=240)
SMPSs Cholesky (SML TS=180)
SMPSs Cholesky (SML TS=120)

Fig. 7. Performance of Cholesky factorization per tile size using SML.

8 José R. Herrero

The following two figures show the scalability of the factorization of a matrix
of dimension 6000 when MKL (Figure 8) and SML (Figure 9) are used. Again,
results for several tile sizes are presented. We can observe that the behavior
is similar. For this matrix dimension small tile sizes should be avoided for any
number of cores.

There is a trade-off in the tile size. On the one hand, it has to be small enough
to expose parallelism. On the other hand is must be large enough to reduce the
overhead introduced by calling BLAS subroutines repetitively, together with
the extra overhead introduced by the parallel runtime framework for dynamic
scheduling of tasks. The optimal size depends on the matrix dimension and the
number of CPUs.

 0

 50

 100

 150

 200

 0 4 8 12 16 20 24 28 32

G
F

LO
P

S

Number of CPUs

Cholesky factorization of a 6000 x 6000 matrix
 on 32 Intel Itanium 2 @ 1.6GHz

SMPSs Cholesky (MKL TS=300)
SMPSs Cholesky (MKL TS=240)
SMPSs Cholesky (MKL TS=120)

Fig. 8. Scalability of Cholesky factorization per tile size using MKL.

 0

 50

 100

 150

 200

 0 4 8 12 16 20 24 28 32

G
F

LO
P

S

Number of CPUs

Cholesky factorization of a 6000 x 6000 matrix
 on 32 Intel Itanium 2 @ 1.6GHz

SMPSs Cholesky (SML TS=300)
SMPSs Cholesky (SML TS=240)
SMPSs Cholesky (SML TS=120)
SMPSs Cholesky (SML TS=60)

Fig. 9. Scalability of Cholesky factorization per tile size using SML.

Exposing Inner Kernels and Block Storage for Fast Parallel DLA Codes 9

5 Conclusions

Our experience with the parallelization of the dense Cholesky factorization with
SMPSs has been greatly rewarding. We found that framework to be very intuitive
and the parallelization could be done very quickly. In addition, the performance
obtained was very good.

The use of non-canonical array layouts suffers the overhead of BLAS routines
since these are called many times to work on relatively small data submatrix.
Specialization of the inner kernels reduces the overhead and exposes simple and
regular codes which a compiler can optimize.

The combination of Square Block Packed format (SBPF) together with the
parallelization with SMPSs and the use of the specialized kernels from our Small
Matrix Library (SML) allows for high performance with reduced storage. An
interesting observation is that this combination can outperform hand-optimized
codes written in assembler.

Acknowledgements

Thanks to the Ministerio de Educación y Ciencia of Spain for funding this project
(grant TIN2007-60625) and Barcelona Supercomputing Center (BSC) for pro-
viding some of the resources used in this work.

References

1. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model for
the cell be architecture. In: SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, New York, NY, USA, ACM Press (2006) 86

2. Chan, E., Zee, F.V., van de Geijn, R., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G.:
Satisfying your dependencies with SuperMatrix. In: IEEE Cluster 2007. (2007)
92–99

3. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Technical Report UT-CS-07-600,
Innovative Computing Laboratory, University of Tennessee Knoxville (September
2007) LAPACK Working Note 191.

4. Perez, J.M., Badia, R.M., Labarta, J.: A flexible and portable programming model
for SMP and multi-cores. Technical report, Barcelona Supercomputing Center -
Centro Nacional de Supercomputación (June 2007) Technical report 03/2007.

5. McKellar, A.C., E. G. Coffman, J.: Organizing matrices and matrix operations for
paged memory systems. Communications of the ACM 12(3) (1969) 153–165

6. Frens, J.D., Wise, D.S.: Auto-blocking matrix-multiplication or tracking BLAS3
performance from source code. Proc. 6th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Program., SIGPLAN Notices 32(7) (1997) 206–216

7. Gustavson, F., Henriksson, A., Jonsson, I., K̊agström, B.: Recursive blocked data
formats and BLAS’s for dense linear algebra algorithms. LNCS 1541 (1998) 195–
206

8. Chatterjee, S., Jain, V.V., Lebeck, A.R., Mundhra, S., Thottethodi, M.: Nonlin-
ear array layouts for hierarchical memory systems. In: Proceedings of the 13th
international conference on Supercomputing, ACM Press (1999) 444–453

10 José R. Herrero

9. Gustavson, F.G.: New generalized data structures for matrices lead to a variety of
high-performance algorithms. In Engquist, B., ed.: Simulation and visualization on
the grid: Parallelldatorcentrum, Kungl. Tekniska Högskolan, 7th annual conference,
Stockholm, Sweden, December 1999: proceedings. Volume 13 of Lecture Notes in
Computational Science and Engineering., Springer-Verlag Inc. (2000) 46–61

10. Gustavson, F.G.: High-performance linear algebra algorithms using new general-
ized data structures for matrices. IBM J. Res. Dev. 47(1) (January 2003) 31–55

11. Elmroth, E., Gustavson, F., Jonsson, I., K̊agström, B.: Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software. SIAM Review
46(1) (2004) 3–45

12. Bader, M., Mayer, C.: Cache oblivious matrix operations using Peano curves. In:
PARA’06. Volume 4699 of Lecture Notes in Computer Science., Springer-Verlag
(June 2006) 521–530

13. Andersen, B.S., Wasniewski, J., Gustavson, F.G.: A recursive formulation of
Cholesky factorization of a matrix in packed storage. ACM Transactions on Math-
ematical Software (TOMS) 27(2) (2001) 214–244

14. Gunnels, J.A., Gustavson, F.G.: A new array format for symmetric and triangular
matrices. In Dongarra, J., Madsen, K., Wasniewski, J., eds.: PARA. Volume 3732
of Lecture Notes in Computer Science., Springer (2004) 247–255

15. Andersen, B.S., Gunnels, J.A., Gustavson, F.G., Reid, J.K., Waśniewski, J.: A fully
portable high performance minimal storage hybrid format Cholesky algorithm.
ACM Transactions on Mathematical Software 31(2) (June 2005) 201–227

16. Herrero, J.R.: New data structures for matrices and specialized inner kernels: Low
overhead for high performance. In: Int. Conf. on Parallel Processing and Applied
Mathematics (PPAM’07). Volume 4967 of Lecture Notes in Computer Science.,
Springer-Verlag (September 2007) 659–667

17. Goto, K., van de Geijn, R.A.: Anatomy of a high-performance matrix multiplica-
tion. ACM Transactions on Mathematical Software 34(3) (September 2007)

18. Herrero, J.R., Navarro, J.J.: Automatic benchmarking and optimization of codes:
an experience with numerical kernels. In: Int. Conf. on Software Engineering Re-
search and Practice, CSREA Press (June 2003) 701–706

19. Herrero, J.R., Navarro, J.J.: Compiler-optimized kernels: An efficient alternative
to hand-coded inner kernels. In: Proceedings of the International Conference on
Computational Science and its Applications (ICCSA). LNCS 3984. (May 2006)
762–771

20. Herrero, J.R., Navarro, J.J.: Using non-canonical array layouts in dense matrix
operations. In: PARA’06. Volume 4699 of Lecture Notes in Computer Science.,
Springer-Verlag (June 2006) 580–588

21. Barcelona Supercomputing Center: SMP Superscalar (SMPSs) (2007)
http://www.bsc.es/plantillaG.php?cat id=385.

