
GENE. Installation guide and performance analysis

Xavier Sáez
Alejandro Soba

Barcelona Supercomputing Center

Technical Report TR/CASE-08-3

Jun 2008

1

GENE. Installation guide and performance analysis

Xavier Sáez1 and Alejandro Soba2

1 Computer Application and Science Engineering, Barcelona Supercomputing Center,
Edifici Nexus, Campus Nord UPC, c/ Gran Capità, 2-4, 08034 Barcelona, Spain.

E-mail: xavier.saez@bsc.es, Web page: http://www.bsc.es

2 Computer Application and Science Engineering, Barcelona Supercomputing Center,
Edifici Nexus, Campus Nord UPC, c/ Gran Capità, 2-4, 08034 Barcelona, Spain.

E-mail: alejandro.soba@bsc.es, Web page: http://www.bsc.es

Abstract. In this report we present the necessary steps to install and run the code GENE into
MareNostrum. Several profiling analysis and performance test were realized in order to prove the code
behaviour. We report some code’s difficulties found in our architecture.

Key words. GENE, gyrokinetic, installation guide, execution guide, profiling

1. Introduction

The gene code (this acronym stands for gyrokinetic electromagnetic numerical experiment) is a tool
for studying problem of plasma micro turbulence from a fully kinetic point of view. To this aim, the
nonlinear gyrokinetic equations for a magnetized electron-ion plasma are solved on a fixed grid in
five-dimensional phase space, employing finite-difference and pseudo-spectral techniques. All relevant
electromagnetic effects are taken into account. Each simulation requires of the order of 105 grid points
and up to 109 time steps, challenging even the most powerful present-day computers. GENE runs
efficiently on multiple massively parallel platforms, achieving, e.g., 280 MFlops on the Hitachi SR-
8000 at Leibniz Computing Center at Munich. To reach this level of performance, it was necessary to
adapt the implementation strategy to each individual machine architecture.

GENE, is a so-called continuum (or Vlasov) code. All differential operators in phase space are
discretized via a combination of spectral and higher-order finite difference methods.

For maximum efficiency, GENE uses a coordinate system which is aligned to the equilibrium magnetic
field and a reduced (flux-tube) simulation domain. This reduces the computational effort by 2-3 orders
of magnitude. Moreover, it can deal with arbitrary toroidal geometry (tokamaks or stellarators) and
retains full ion/electron dynamics as well as magnetic field fluctuations. At present, GENE is the only
plasma turbulence code in Europe with such capabilities.

For tests on higher processor numbers, the BlueGene/L system at IBMWatson Research Center was
used. Here a functionally and algorithmically improved code version, GENE v11+, was used, with
the same parallelization scheme as in GENE v11. Strong scaling measurements showed close to linear
speedup up to 4k processors; on 8k processors, a parallel efficiency of 73% was achieved, revealing
some degradation. For further scalability improvements well beyond 8k processors, the second velocity
dimension was parallelized in addition [1, 2].

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

XAVIER SÁEZ AND ALEJANDRO SOBA 2

2. Source Code

Gene is written in FORTRAN 90/95 and it consists of approximately 31 files.
The application also includes an IDL based tool for data visualization and analysis.

The current used release is 1.2.

3. Libraries

Gene requires the following software in order to compile:

• a FORTRAN 90/95 compiler
• the MPI message passing interface
• an FFT routine (ESSL, MKL or FFTW)
• the BLAS/LAPACK library (also contained in ESSL and MKL)

Additional software packages that can extend its functionality are:

• the PETSC/SLEPC package for eigenvalue computations
• the OpenMP for shared memory multiprocessing

4. Installation

Set the GENE HOME environment variable to the working directory and unzip the zipped source file.

Modify the makefile in the main directory to allow the automatic selection of your machine. The
following lines are added for the selection of Marenostrum:

ifeq ($(MACHTYPE),ppc64 -suse -linux)

MACHINE = Marenostrum

endif

Furthermore, there is a makefile for each machine-specific architecture with all the information needed
to compile GENE in the src/svprob subdirectory. Make sure there is one for your system, otherwise
create it from the new machine makefile.

This new makefile will configure the following variables about your system:

• the FFT routine (FFTLIB) and its library: mkl, fftw or essl
• the precision (PRECISION): double or single
• the Open MP support (OPENMP) and its flags
• the use of the PETSC and the SLEPC packages (SLEPC)
• the use of the NAG compilers (WITHNAG)
• the FORTRAN compiler (FC) and its flags (FFLAGS)
• the C compiler (CC) and its flags (CFLAGS)
• the linker (LD) and its flags (LDFLAGS)
• the use of the Simple Performance Toolkit (PERFLIB)

So, for Marenostrum, we have created a specific Marenostrum.mk makefile into a new subdirectory,
src/svprob/Marenostrum:

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

GENE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 3

cd $GENE_HOME/src/svprob

mkdir Marenostrum

cp new_machine/new_machine.mk Marenostrum/Marenostrum .mk

Next, the main modifications performed in the Marenostrum.mk file:

##

SWITCHES

##

FFTLIB = essl

PRECISION = double

OPENMP = yes

MPI_IO= no

SLEPC= no

WITHNAG = no

PERFLIB = none

##

COMPULSORY LIBRARIES

##

ifeq ($(FFTLIB),essl)

INCPATHS +=

LIBS += -L/usr/lib64 -lessl

PREPROC += -WF ,-DWITHESSL

endif

##

COMPILER & COMPILER FLAGS

##

CC = xlc

FC = mpif90

FFLAGS = -q64 -O3 -qstrict -qtune=ppc970 -qarch=ppc970 \

-qcache=auto -qmoddir=$(OBJDIR) -qflag=I:I

PREPROC += -WF ,-DAIX

LD =$(FC)

LDFLAGS = -q64

##

ADDITIONAL COMPILER FLAGS (set via SWITCH in header)

##

ifeq ($(OPENMP),yes)

FFLAGS += -qsmp=omp

LDFLAGS += -qsmp=omp

PREPROC += -WF ,-DWITHOMP

endif

ifeq ($(PRECISION),double)

FFLAGS +=- qrealsize =8

PREPROC +=-WF ,-DDOUBLE_PREC

endif

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

XAVIER SÁEZ AND ALEJANDRO SOBA 4

Finally, a last modification has performed in the specific makefile. The run target establishes the lines
for running GENE in your system. In our case, the execution is submitted to the Marenostrum batch
queue (File 3) and the mpi call is replaced with a srun call:

##

Linking

##

run: $(RUNDIR)/$(EXEC)

ulimit -s unlimited ;\

cd $(RUNDIR);\

OMP_NUM_THREADS =$(OMP_NUM_THREADS)\

srun ./$(EXEC)

Once the makefile is ready, go to the testsuite directory and type the following command to build
GENE’s executable:

cd $GENE_HOME/testsuite

gmake -f ../ makefile

After, there are some test problems to allow you to check the installation, you can either execute
interactively using testsuite mpirun or submit it to a batch queue (File 1).

#!/bin/bash

@ job_name = gene.x

@ class = bsc_cs

@ initialdir = .

@ output = Gene%j.out

@ error = Gene%j.err

@ total_tasks = 9

@ cpus_per_task = 4

@ wall_clock_limit = 01:00:00

date

./ testsuite -w -outdir $GENE_HOME/testsuite

date

File 1. test.cmd: script to submit testsuite to Marenostrum batch queue

Note: If your system has installed MPI libraries which are non-thread safe, some tests can fail. In
this situation, it is enough to define the precompiler switch ia64 in the machine-specific makefile to
solve the problem and to pass the tests. This flag prevents a call to OpenMP in the comm.F90 file. For
example:

ifeq ($(OPENMP),yes)

FFLAGS += -qsmp=omp

LDFLAGS += -qsmp=omp

PREPROC += -WF ,-DWITHOMP -WF ,-Dia64

endif

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

GENE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 5

5. Execution

Firstly, you have to create a folder in which you define the parameters for the problem. The newprob
script will generate a new problem folder:

cd $GENE_HOME

./ newprob

The created folder may be renamed, but the directory structure must not be changed.

The next step is to recompile the GENE executable, which will be installed into a subdirectory in the
problem folder:

cd prob01

gmake -f ../ makefile

Now, adapt the parameters file with the physical and numerical parameters of the problem. Also,
specify the input and output data. This file does not have to be know until the run time, so it can be
changed between executions. You can find an in-depth explanation of all the fields in the GENE user
manual.

For instance, in the file 2, there is an example of parameters file.

¶llelization

n_procs_s = 2 !should be a divisor of n_spec (maximum: nspec)

n_procs_v = 1 !should be a divisor of nv0 (maximum: 0.5* nv0)

n_procs_w = 8 !should be a divisor of nw0 (maximum: nw0)

n_procs_y = 1 !should be a divisor of nky0 (keep low)

n_procs_z = 8 !should be a divisor of nz0 (maximum: 0.5* nz0)

/

&box

n_spec = 2

nx0 = 64

nky0 = 32

nz0 = 128

nv0 = 64

nw0 = 32

lx = 125.628

kymin = 0.05

lv = 3.0

lw = 9.0

/

&in_out

diagdir = ’/home/bsc21/bsc21331/EUFORIA/GENE/release -1.2/ prob01 ’

chptdir = ’/home/bsc21/bsc21331/EUFORIA/GENE/release -1.2/ prob01 ’

read_checkpoint = .f.

write_checkpoint = .f.

istep_field = 0

istep_mom = 0

istep_nrg = 0

istep_vsp = 0

istep_schpt = 0

/

&global

nonlinear = .t.

calc_dt = .f.

ntimesteps = 1 ! take more if time per time step is fluctuating

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

XAVIER SÁEZ AND ALEJANDRO SOBA 6

timelim = 64500

dt_max = 0.0385

courant = 0.4

beta = 0.001

hyp_z = 0.25

hyp_v = 0.2

magn_geometry = ’s_alpha ’

shat = 0.796

q0 = 1.4

curv = 2.0

trpeps = 0.18

/

&species

name = ’ions ’

omn = 2.22

omt = 6.92

mass = 1.0

charge = 1

temp = 1.0

dens = 1.0

/

&species

name = ’electrons ’

omn = 2.22

omt = 6.92

mass = 0.0025

charge = -1

temp = 1.0

dens = 1.0

/

File 2. parameters: a parameters file

Once parameters file is edited, make sure that input files and output directories exist, and start GENE
interactively or submit it to a batch queue. In our case, it has to be submitted to a Marenostrum
batch queue (File 3).

#!/bin/bash

@ job_name = gene.x

@ class = bsc_cs

@ initialdir = .

@ output = Gene%j.out

@ error = Gene%j.err

@ total_tasks = 128

@ cpus_per_task = 1

@ wall_clock_limit = 00:02:00

export OMP_NUM_THREADS =4

date

gmake -f ../ makefile run

date

File 3. run.cmd: script to Marenostrum batch queue

Note that the number of MPI processes is given by nprocss · nprocsw · nprocsv · nprocsy · nprocsz. In
addition, for shared memory architectures, the number of OMP processes can be set independently
by setting the OMP NUM THREADS environment variable and the total number of processors needed is
then NMPI · OMP NUM THREADS.

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

GENE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 7

6. Profiling

The experiments have been run on IBM Power PC 970MP processors at 2.3 GHz. There are 2
processors per chip and two chips per node. Each of these nodes have 8 Gb of shared memory, so
each processor has 2Gb of memory.

All the experiments are based on the physical and numerical parameters showed in File 2 with the
following adaptations to run in a different number of processors:

Tests Parameters
MPI tasks thrds/task procs n procs s n procs v n procs w n procs y n procs z

64 1 64 2 1 8 1 4

128 1 128 2 1 8 1 8

256 1 256 2 2 8 1 8

512 1 512 2 1 16 1 16

1024 1 1024 2 2 16 1 16

2048 1 2048 2 4 16 1 16

16 4 64 2 2 2 1 2

32 4 128 2 1 4 1 4

64 4 256 2 1 8 1 4

128 4 512 2 1 8 1 8

256 4 1024 2 2 8 1 8

512 4 2048 2 1 16 1 16

Figure 1 compares the two code versions: the pure MPI and the hybrid (MPI + OpenMP). The
left graph shows the performance of both cases, we can see that the pure MPI case is faster than the
hybrid case. In the right graph, the speedup is showed and we can see that the hybrid code has a better
scalability than the pure MPI code.

Figure 1. Performance and speedup

As this behaviour looks unusual because the hybrid version should adapt better to multiple SMP
nodes architecture (like Marenostrum), we decided to analyzed an execution in detail, the case of 128
MPI tasks vs 128 threads (32 MPI task and 4 threads per task).

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

XAVIER SÁEZ AND ALEJANDRO SOBA 8

The following table shows the distribution of the execution time:

128 MPI tsks 32 MPI tsks * 4 thrs

State Time(s) Time(%) Time(s) Time(%)

Running 3183.24 93.29 3143.43 82.00
Group Communication 75.17 2.20 38.88 1.01
Send/Receive 153.89 4.51 75.43 1.97
Sched & Fork/Join 0.00 0.00 5.92 0.15
Idle 0.00 0.00 569.99 14.87
Total 3412.30 100.00 3833.65 100.00

Although the hybrid version is 10% slower than MPI pure version, it spends less time in the running
part. Moreover, the hybrid version is more efficient in the communications because the threads use
shared memory. Then, it is possible to recognize that the performance loss is focused in the idle time
(569.99 seconds).

Due to this, the hybrid version does not reach the best performance because some processors have no
work during periods. To study this possibility, we tracedand visualized with PARAVER tool [3] some
executions with OpenMP, in order to show graphically the thread scheduling (Figure 2).

Figure 2. Trace of one time step: the upper part is the hybrid version and the lower part is the MPI
pure version.

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

GENE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 9

To read the figure 2, the meaning of the colours is:

• Dark blue means CPU active
• Light blue means CPU idle
• Orange means MPI collective communications
• Pink means send/receive functions.

Also, the components of the time step have been identified in the figure:

• The red box is the first Runge-Kutta step where (in nonlinear operation) the maximum ExB
velocities are calculated and communicated in order to adapt the time step ”dt” (second
collective group),

• The green boxes are the remaining three Runge-Kutta steps which do not need to calculate the
ExB velocities again.

The analysis of the figure 2 shows that the hybrid version has less pink and orange regions, so the
communication phase has decreased. In contrast, an important light blue region has appeared in 3 of
each 4 threads. So there are regions that are not completely parallelized. As a result, the execution of
one time step takes more time in hybrid version.

7. Conclusion

The realized analysis shows that GENE haves good scalability up to 512 procesors, going down to
range of processors form 512 to 2024. The called hybrid version shows better scalability besides its
lower performance. The PARAVER picture shows that the iddle time in the working scheduling of the
threads is responsable of this unusual behavior in the hybrid version.

It would be interesting to study the OpenMP implementation to improve the thread scheduling with
OpenMP and decrease the idle time of the threads.

References

1. Gene Development Team. The Gyrokinetic Plasma Turbulence Code. Gene: User Manual, January 2008.
http://www.ipp.mpg.de/~fsj/.

2. Hermann Lederer, Reinhard Tisma, Roman Hatzky, Alberto Bottino, and Frank Jenko. Application
enabling in deisa: Petascaling of plasma turbulence codes. In C. Bischof, M. Bucker, P. Gibbon, G.R.
Joubert, T. Lippert, B. Mohr, and F. Peters, editors, Parallel Computing: Architectures, Algorithms
and Applications, volume 38, pages 713–720, Julich, September 2007. John von Neumann Institute for
Computing. NIC-Series.

3. Vincent Pillet, Jesús Labarta, Toni Cortés, and Sergi Girona. Paraver: A tool to visualize and analyze
parallel code. Transputer and occam Developments, pages 17–32, April 1995. http://www.bsc.es/
plantillaA.php?cat_id=485.

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-3

