
Fault Tolerance features in GRID superscalar
Raül Sirvent, Rosa M. Badia and Jesús Labarta

Barcelona Supercomputing Center
Barcelona, Spain

Email: [raul.sirvent, rosa.m.badia, jesus.labarta]@bsc.es

Abstract—Regarding Fault Tolerance, several techniques and
strategies are well-known and commonly used. However, not
all of these techniques can be applied to all the possible
scenarios. In this paper we discuss how GRID superscalar, a
programming model which tries to ease the programming of
Grid applications, can benefit from Fault Tolerance. We describe
the new mechanisms implemented in the runtime in order to
deal with failures: automatic drop of machines, soft and hard
timeouts for running tasks, asynchronous results’ transfer during
an application’s execution, retry of operations in the library and
avoiding situations that previously made the application to stop.
We specify the benefits and drawbacks of these implemented
mechanisms, and we describe the execution of a Monte Carlo
algorithm which allows us to prove their usefulness, specially
in long executions. We also propose as future work other
mechanisms to increase even more the tolerance to failures of
the system.

I. INTRODUCTION

It is well known that the Grid is a distributed collection of
services and resources which can be used in a remote fashion.
But it is also important to remember that, as a distributed
system, the Grid is an environment prone to failures. A
Grid may be formed by thousands of machines or clusters,
geographically distributed, with different administrators, so,
many abnormal behaviors can arise: network failures, machine
failures, machines leaving the Grid, and so on. A Grid com-
ponent should be aware of such situations, in order to react
properly, thus not having to stop because something happened
in a machine. In this scenario is where Fault Tolerance (FT)
techniques grow in importance.

When reading literature about Fault Tolerance we can see
that it can be applied to different areas such as architecture
design [1], hardware [2] or software [3] [4]. A failure can
be defined not only as a software or hardware crash, but
also as a system not accomplishing some requirements (i.e.
a performance degradation). Failures (hardware or software)
are usually classified in three categories:

• Transient failures: They appear once, and then disappear.
• Intermittent failures: They appear and disappear randomly

(without following a pattern).
• Permanent failures: Whenever they appear the only solu-

tion is to repair or replace the faulty component.
In order to overcome these failures, the most common

strategies used are based on redundancy. This redundancy can
also be categorized in three classes:

• Information redundancy: Add information for detecting
or recovering failures.

• Time redundancy: Retry a certain operation which has
failed.

• Physical redundancy: Adding extra hardware or software
to the system.

The strategies are also known as backward recovery, when
the system returns to a previous correct state, and forward
recovery, when the system is brought to a correct state. As
an example, a log or checkpoint mechanism can be identified
as an information redundancy and backward recovery mecha-
nism, and a retry mechanism would be a time redundancy and
forward recovery mechanism.

GRID superscalar [5], as a Grid component, must be aware
of failures. In this paper we discuss which are the mecha-
nisms suitable for GRID superscalar in order to deal with
failures. The runtime already has a checkpointing mechanism
(backward recovery) in order to avoid repeating the whole
computation whenever a failure appears: the application is
stopped, the error can be corrected manually, and then the
computation can continue from the checkpoint file. The main
goal of this work is to allow an application running with GRID
superscalar to keep running despite of the possible failures that
can arise during the execution. It is clear that the checkpoint
mechanism and the new Fault Tolerance mechanisms added
are complimentary (in case of an unrecoverable failure, a user
may restart the execution from the checkpoint).

Section II will introduce the GRID superscalar program-
ming environment. Then section III will detail more specifi-
cally the mechanisms implemented in the runtime for making
it fault tolerant, combining forward and backward recovery
strategies with information and time redundancy. Section IV
presents the results of a designed test case which allows us to
demonstrate the usage of these new mechanisms. And section
V will draw some conclusions and future work we envision.

II. GRID SUPERSCALAR OVERVIEW

As a programming model, GRID superscalar is focused on
easing the programming of Grid applications. It is clear that
the easiest way of programming for a user is with the desired
programming language, in which the user is already familiar
with, and in a sequential fashion, without using complicated
parallel schemes where the user must control syncronizations,
message passings, and so on. GRID superscalar achieves this
by providing bindings to different programming languages
(currently C/C++, Perl, Java and Shell script), and a runtime
environment which automatically executes in parallel the user-
defined functions that do not have data dependencies between



Fig. 1. GRID superscalar in a nutshell

them. From a source code, GRID superscalar builds internally
a workflow with the existing data dependencies between
functions, as shown in figure 1, and from that workflow the
tasks without dependencies are considered to be run on the
Grid. GRID superscalar is not only a programming model,
but also a set of tools that allows users to easily gridify an
application.

In order to program an application with GRID superscalar,
a developer must provide a main program, the code of the
functions in that specific main program to be executed in
the Grid, and an IDL file, which describes the interface of
these functions (the type of the parameters, and the direc-
tion of these parameters). There is a small set of calls that
must be added in the main program: GS On for starting the
runtime, and GS Off for stopping it. Calls for handling local
files (GS Open/GS Close, GS FOpen/GS FClose), as the file
is the data unit considered for detecting the dependencies
between the functions. Also more advanced, but optional,
primitives are provided, such as GS Barrier to wait for all
generated tasks to finish, and GS Speculative End to easily
create optimization-like algorithms.

A tool named Deployment Center allows not only to graph-
ically specify and check the Grid configuration, but also to
deploy (send and compile) locally and remotely the code
involved in the developer’s project. This deployment step is
assisted by gsstubgen, another tool in charge of generating
stubs and skeletons needed for allowing the runtime calls, and
gsbuilder, responsible for compiling the generated code. This
process creates a local client binary and several remote server
binaries, which leaves a master-worker paradigm application
ready to run.

When the user invokes the local binary (the master or client)
the runtime comes into action. It starts building a Directed
Acyclic Graph containing the data dependencies between the
tasks generated until that moment, and at the same time starts
submitting the tasks which are ready (with no dependencies)
to the available machines, thus achieving its parallel execution.
In order to decide which is the most suitable host for a task,
an estimation of the task’s execution time provided by the user
is considered, as well as the time that will be spent to transfer
all input files required.

The runtime is also in charge of transferring the files needed

by a task to the selected host, submitting the task, and after
completion, transfer the results back to the master. These
operations are more prone to failures, as they are remote and
executed by a middleware that provides the basic Grid services
to the runtime. As a consequence, our main goal is to achieve
the correct execution of these basic interactions with the Grid
middleware despite the possible failures that can arise.

The input and output files related to a task are kept in the
worker until the end of the execution to try to exploit the
locality of files, thus saving file transfers. This means that the
results of a task can be used when the task finishes, without
having to wait for the transfer to the master to end. When
a task has finished, the data dependence graph is updated
(this can generate new ready tasks) and the resource becomes
available for executing a new task. At the end of the execution,
the remote files are cleaned up, and the remaining results are
transferred back to the master, leaving everything as if it had
been a local execution of the application. Other techniques are
used in the runtime, such as file renaming to erase false data
dependencies, disk sharing to make GRID superscalar aware
of data replicas or real shared file systems, checkpointing in
order to restart the computation from where it stopped because
of a big failure (detailed in section II-A), and ClassAds
[6] constraints specification to filter the resources in the Grid.
Also dynamic host reconfiguration is offered to add or remove
machines to the computation.

For monitoring the execution, the GRID superscalar Moni-
tor can be used. This tool is very useful to visualize the task
dependence graph in order to investigate why the application
does not reach the desired parallelism. It also shows the status
of the tasks: if a task is running it states the machine where
the task is running, and when a task is done, it still holds
the information about where it has been run, thus providing a
graphical way of determining which hosts are executing more
tasks.

This programming model has been adapted to several envi-
ronments, currently: Globus (which can work with versions 2
and 4 of the Globus Toolkit [7]), ssh/scp and Ninf-G [8].

Regarding the ssh adaptation of the programming model,
one of the objectives was to overcome the overhead detected
in some Grid middlewares when submitting small granularity
jobs. Also if a user wants to work with GRID superscalar
inside a cluster it makes no sense in introducing the overhead
of calling to a Grid middleware in order to operate between
the different nodes, because all the resources are local. Inside
a cluster there is no need of encrypted communication, so
an easier task notification mechanism can be used, based on
TCP/IP sockets.

The Ninf-G adaptation offered several advantages for GRID
superscalar when using a Grid middleware. Ninf-G has an
advanced file transfer protocol and the possibility of creating
persistent workers. Ninf-G is a GridRPC implementation, thus
provides a simpler interface, in contrast to Globus, where the
job submission is based on building the corresponding RSL.

The current ongoing developments of the programming
model have a different general approach for achieving the



parallelization of the code. Instead of using generation of
intermediate code from the IDL file, the new version is based
in code annotations and using a source to source compiler. It
offers new features such as full support for scalar variables,
support for multidimensional arrays and structs only contain-
ing scalars, client side worker threads and tracing for post-
mortem analysis.

A. Checkpoint mechanism

The checkpoint mechanism included in GRID superscalar
was an early step to achieve tolerance to failures. It is classified
as a backward recovery strategy (we want to go back to a
correct state) and with information redundancy (we need to
store extra information about the tasks finished correctly).
The main idea in its design was to stop the application when
an error was detected, but saving the work performed until
that failure in order to avoid repeating it. This allows the
user to correct the error (if his/her interaction is needed for
that purpose) and to restart the application from the point
where it stopped. This mechanism did not distinguish between
recoverable or unrecoverable failures, and this is one of the
things that we want to overcome in this work.

Task errors in GRID superscalar can be detected in two
levels: at a middleware level or at a task level. The Grid
middleware can notify to the master when something related
to itself is failing for an executing task (i.e. a Grid service
not working correctly). At a task level the error can be risen
by two main causes. The first one is a signal received by a
worker (caused by a segmentation fault, division by zero, or
because the process has been notified with a SIGTERM that
it must stop). The second one is related to the application: the
user detects a wrong result in a task and wants to notify that
to GRID superscalar.

GRID superscalar’s checkpoint works at a inter-task level.
This means that the task’s status is only saved if its execution
has finished correctly. Tasks which may fail during their
execution will have to be restarted from the beginning. This
can be a problem when the execution time of a task is
big. In these cases, we recommend the programmer to use
an application level checkpoint, tailored to his/her needs, or
another low level checkpoint mechanism already available
(like the ones described in [9]).

In our strategy, we assume that we can only checkpoint
a task if all its predecessor tasks in a sequential order have
finished. This sequential order is determined by the sequential
execution of the application’s main program. This assumption
reduces the complexity of writing a checkpoint because we
do not need to write all the data structures in memory to the
disk, and it also reduces the number of files that we must
store in order to restart the application correctly. With the
renaming technique applied in the runtime, a file can have
a lot of different versions from itself, and in the worst case,
we would need to store all of them in order to be able to
restart from a specific point. This mechanism restores what
we call the sequential consistency of the application: it stops
the application as if a sequential application was stopped. The

Fig. 2. Checkpoint example

drawback is that some tasks may have finished their execution,
but we are not able to checkpoint them because some of their
predecessors have not finished. However, this side effect can be
lowered by influencing the scheduling decisions in the runtime
(giving more priority to tasks with a smaller task number,
thus, prior in the tasks generation). In addition, once a failure
is detected, the runtime waits for the running tasks that have
the possibility of being checkpointed. The tasks which cannot
be saved are cancelled to avoid wasting time with them. We
can see an example of this behavior in figure 2. Tasks 0
and 1 have been previously checkpointed, tasks 2, 3 and 5
are running, and tasks 4 and 6 are pending. Task 3 finishes
its execution but it cannot be checkpointed because it has
predecessors still running (task 2). After that we receive a
notification about a failure in task 2, which means that we
won’t be able to checkpoint tasks with a higher sequence
number. The immediate decision is to discard task 2 even
though it has finished, and cancel task 5 because we will not
be able to checkpoint it even if it executes correctly.

So, in order to maintain a task’s state when its execution
is correct, we need to store the task number (if the previous
task has finished), and know the current versions of all the
files in that given moment to save them in case of error. More
precisely, we need to save all results generated by any previous
task which may be considered a final result (this means, it
must be the last valid version of the file). To these files we
need also to add all the files opened in the main program
with GS Open and GS FOpen with read mode, because, when
the user restarts the execution, the instructions after an open
must read the same values they read during the first execution.
The same happens with the output scalar values of a task. As
we are not going to execute the task again, we need to store
the results this task has generated. This is very important,
because the execution flow in the main program must be
reproduced exactly as the previous execution. If a decision
in this execution flow depends on an intermediate value, the
decision must be the same in the restart.

One of the features of this checkpoint mechanism is that
the user does not need to interact with the runtime in order
to enable it: it is completely transparent to the application. In
order to restart an execution which has failed, the user only
needs to re-run his/her main program. If a checkpoint file is
found, the runtime will start automatically from the stored
point. And if there is no checkpoint file, the execution will
start from the beginning.



III. ADDING FAULT TOLERANCE TO GRID SUPERSCALAR

Our main approach in order to add Fault Tolerance mecha-
nisms to GRID superscalar is that we want the application to
keep running even when failures arise. Following the classifi-
cations made in section I, when we consider software failures
we can tackle the three types of failures using time redundancy
(retrying the operation), as it may be very difficult to recover
from a Grid middleware error with information redundancy at
application level. Also using physical redundancy (submitting
a task more than a single time at the same moment) may cause
a high overload in the system. When focusing on hardware
failures the situation is even less in control of the application,
as the user cannot have a deep control of the machines that
belong to the Grid (and he/she is probably not interested
in having such a control). Transient and intermittent failures
can be handled by retrying the operation which has failed,
but permanent failures can only be treated by removing the
machine which is failing from the pool of machines available
to the computation. Anyway, whenever the permanent failure
is solved, a user may add again the machine to the computation
dynamically at run time.

Next sections will describe the specific implementations
in order to overcome the failures detected when running
applications with GRID superscalar.

A. Automatic drop of machines

When a machine is not able to execute jobs because of a
failure, GRID superscalar must be aware of that and adapt
its behavior to the new circumstances. This situation can
occur frequently, if we see the Grid as a large collection
of heterogeneous machines. Previously, a final user was able
to drop manually a machine from the computation with the
dynamic host reconfiguration script, which reads again the
GRID superscalar configuration file that specifies the hosts
that can run jobs for a particular application. This solved
the situation where a machine is giving a poor performance,
and thus slowing the overall execution. The problem was that
a remote failure in the execution made the master to stop,
notifying that to the user. Now, at run time, whenever a job
execution fails, the Grid services are checked (i.e. Globus)
and if they are running correctly the operation is retried a
maximum of three times. If the check fails or the retries reach
the retry limit, the machine will not be used to execute other
tasks.

In order to drop a machine, the runtime waits for other
jobs running there, because it may happen when only the
Grid middleware fails that new submissions do not work, but
previous running jobs keep executing and sending notifications
to the master, or even the service for transferring files can
keep running. If the failure is a general failure of the remote
machine, running tasks will be removed with the timeout
mechanism described in section III-B. Because of the policy
of exploiting file locality implemented in GRID superscalar,
it could be possible that some result files are only available
in the machine that must be dropped. So, before dropping the
machine the runtime checks if some files are only available in

the working disk of that machine, and tries to transfer them
to the master. If the file transfers also fail, the only possible
solution is to restore the sequential consistency, stopping all
the remote tasks, and resuming from the last checkpointed
task. This will be also done automatically at run time by the
library without any additional effort from the user and allowing
the execution to continue.

When a machine is dropped, the machine information is kept
in the runtime for future use (i.e. the user fixes the problem
and wants to add the machine again to the computation), but
no job can be submitted to it.

B. Soft and hard timeouts for remote tasks

Several kinds of failures might appear when a machine runs
a job. In any of the possible failures, the key is to be able to
determine that something is happening, and correct the wrong
behavior. We have taken the task time estimations given by
the user as a reference to do so. As it has been explained in
section II, the user can specify the estimated time that a task is
going to need to be run. From that time, we define two upper
bounds: the timeout factor and the resubmit factor.

The timeout factor determines the time when the master is
going to ask for the status of a remote job. It is calculated
multiplying the estimated execution time for a task, and
the specified timeout factor (its value defaults to 1.25). For
instance, if a user has specified a estimated time for a task
of 100 seconds, a timeout factor of 1.25 means that for
this task, when the execution time reaches 125 seconds, the
runtime is going to check that the task is still running. If the
Grid middleware responds correctly, the checks will continue
every 30 seconds (to avoid overloading the machines, and in
correspondence to Globus poll job manager interval) until we
reach the time specified by the resubmit factor. If the task does
not respond, or the status is not running, the task is resubmitted
in the same machine. This is done because a transient failure
may have affected the task, but the machine may still be able
to run new jobs. When a machine reaches 3 resubmits of tasks,
it will be dropped as described in section III-A, and the task
will be resubmitted into a new resource.

The resubmit factor is like a hard limit for the task execution
time. It specifies the time when the master is going to kill the
task, because the user believes that the execution has gone
abnormal. This will avoid the master waiting for a specific
task for a long time because of a performance degradation in
a specific machine, thus delaying the whole execution process,
and also avoids the master to hang up when a task does so. The
resubmit factor is calculated as the timeout factor: multiplying
the estimated time of the task and the resubmit factor. Its value
defaults to 2, so in an estimated time of 100 seconds, the hard
limit will be reached at 200 seconds. Whenever this limit is
reached for a task, the task is killed and resubmitted in the
same machine. The reason for this is because the failure may
be caused not only by a software component (the task) but also
by the hardware. So we first resubmit in the same machine,
believing that the failure comes from a temporary failure in the
hardware (i.e. a performance degradation due some overload



period of the machine), a maximum of three times. When a
machine has three resubmits, it may have a permanent failure
in terms of performance, which allows us to submit jobs but
they execute very slow, so we resubmit the task into a new
machine.

As it has been explained, both parameters have a de-
fault value. However, the timeout and resubmit factors can
be specified by the user with the environment variables
GS TIMEOUT FACTOR and GS RESUBMIT FACTOR, al-
ways taking into account that GS TIMEOUT FACTOR must
be bigger than 1, and that GS TIMEOUT FACTOR must be
smaller than GS RESUBMIT FACTOR. This allows the user
to tune the behavior of these two mechanisms.

C. Asynchronous transfers of results for each task

The checkpoint mechanism previously available in GRID
superscalar is no more valid when we expect machines to be
completely unavailable: the results of each task were only
stored in the worker that run the task in order to exploit
the data locality for upcoming tasks. Thus, if a task is
checkpointed, but its results are in a machine that we cannot
access, we reach an inconsistent state. This is also important
when a machine is dropped, because the files only available in
that machine must be recovered in order to reach a consistent
state in the checkpoint. Of course, if a file corresponding to
a task that has been checkpointed is no more available, the
checkpoint can be undone, but we foresee that this will not be
a good solution, as the checkpoint undo process could undo
all the checkpoints done util that moment, thus not having
checkpoint at all.

In order to improve the checkpoint mechanism to avoid
these inconsistent states, we transfer the results of each task
(once the task has finished) to the master, but leaving a copy
in the worker aswell, to keep exploiting the locality of data.
This transfer of results is done in a background process during
the execution, so hidding the time taken for transferring the
files to the master and not delaying the whole execution.
So, with this new mechanism, a task will be checkpointed
when the results are available in the master. This has some
advantages and some drawbacks. We increase the availability
of a file, so if a remote machine must be dropped, we will
still have a copy of the result files in that machine in the
master, thus avoiding to have to restart at run time from
the checkpoint file, as described in section III-A. However,
if the transfer of results is not completed before the failure
appears, the automatic recover mechanism from the checkpoint
file is still needed. Another key point is that once a task is
checkpointed, now we can ensure in all the cases that the
task checkpoint is not going to be undone, so the task will
not be computed again. And, as a collateral benefit, the fact
of transferring task results to the master during the execution
makes that, at the end of the whole execution, the postprocess
needed to retrieve final results to the master is very small or
inexistent. In brief, we are hidding the postprocess time with
the execution time, speeding up the whole execution specially
when the main program has lots of result files with a single

version for that file (every time a file is renamed in the runtime
with the renaming mechanisms, a new version of that file is
created). We also identified two drawbacks: a bigger usage of
the master’s disk and more transfers to the master, because
previously the different versions of a file were stored in the
remote workers, and only the final version was transferred
to the master. Nevertheless, the benefits are bigger than the
drawbacks identified.

D. Retry of operations inside the library

As we have seen in section III-A, a machine can be dropped
from the computation when the Grid services available are
not working. More precisely in the job submission related to
the postprocess, before dropping the machine, several actions
are considered in order to submit a job. The objective of
the job submission related to the postprocess is to cleanup
remote old versions of result files as well as input files, and
retrieve the latest version of result files. In GRID superscalar
several machines can share a working directory, so when a job
submission fails for a specific machine, a different machine
with the same disk can be considered for submitting this job
related to the postprocess. For example, machine A and B work
with the same working disk named Disk1. If we are not able
to submit a job to A in order to cleanup and retrieve files, we
can try the same thing with B, obtaining the same final result:
Disk1 has been cleaned up. Therefore, the retries implemented
are not only related to machines, but also to disks. The same
is done when asynchronously retrieving result files of a task
(mechanism described in section III-C).

Inside the master library, there are other operations that can
fail, rather than Grid middleware operations. These operations
are system calls. Our main objective when implementing
retries in system calls inside the library is to avoid transient
failures which may occur in the master machine (I/O errors,
etc...). With these retries, we can save the master from having
to stop because a transient failure has appeared in its own
machine. As system calls are very fast in response, in contrast
to remote calls to the Grid middleware, the retries have been
delayed with 1 second each, and increased to 5. This is
translated to a period of 5 seconds retrying a system call
whenever it fails, which is not a big overhead to the master,
and it is enough time to consider the failure as permanent.

E. Avoid situations that make the master stop

As we have seen in previous sections, the main objective
of the Fault Tolerance mechanisms implemented is to avoid
the master to stop the computation. This can happen not
only because Grid middleware failures, but also because of
system calls inside the library. However, there is still a
cause of failure inside the master library, and is related to
the size of strings. We have made a big revision to the
library code, and we have removed all the avoidable situations
that made the master to stop. One example of this is in
the sockets mechanism implemented for receiving messages
from tasks. This mechanism got a fixed maximum message
size, which could be modified by the environment variable



TABLE I
BEHAVIOR EXAMPLES

Failure Behavior

The middleware notifies Check Grid services. Resubmit
a task failure in the same or a new machine

A task reaches Ask for the status every 30 sec.
the soft timeout If no answer, check Grid services and

resubmit in the same or a new machine

A task reaches Cancel the task. Resubmit in
the hard timeout the same or a new machine

A system call fails Retry 5 times with
in the runtime 1 second delay

A check of Grid Drop machine
services fails

More than 3 retries Drop machine
in a machine

GS MAXMSGSIZE. Previously, if a message was bigger than
the maximum size specified, the master stopped with an error.
Now, the master resizes dinamically the buffers for receiving
messages, and reads repeatedly from the sockets to retrieve the
whole information. The same happens for other pre-defined
parameters, as GS MAXPATH (maximum size of a path),
GS GENLENGTH (maximum size of a scalar parameter), and
so on.

Table I details some examples where the mechanisms de-
scribed are used to detect and overcome a failure.

IV. EXPERIMENTAL RESULTS

All the mechanisms described in previous sections have
been implemented and tested in current distribution of GRID
superscalar. For this paper we have designed a long test case
as a proof of concept about the new features available. We
must clarify from the beginning that the main goal of a test
when talking about Fault Tolerance is to keep the application
running despite the failures that can arise in the different
machines that form our Grid. We are not expected to give
a better performance than with a error-free environment, but
we will be able to see how these errors affect to the expected
performance.

We have implemented a Monte Carlo algorithm, composed
of 960 simulations, where every simulation takes 1 hour time
to run. This means that the total time for executing this
algorithm sequentially can be roughly estimated in 960 hours
(40 days). Our Grid environment for running this experiment is
composed of four PCs, with a Intel Pentium 4 CPU 3.00GHz
processor with Hyper-Threading technology and 1 GB of
RAM. These computers have Globus installed, as well as the
latest GRID superscalar distribution. We run 2 simulations
at the same time in a single processor, thus the estimated
execution time in our Grid is 120 hours (5 days), because they
can be run in parallel as no data dependencies exist between
the tasks.

Another important part of the experiment is the design of
the failures. We have simulated four different kinds of failures.

TABLE II
SUMMARY OF FAILURES

Day Machine Type Expected Expected Drops
Job Failures

Day 1 bscgrid02 Kill Workers 12 3

Day 2 bscgrid03 Kill Service 12 3

Day 3 bscgrid04 Performance 8 2

Day 4 bscgrid01 Stop Service 10 5

The first one was to kill the running workers in a remote
machine. This could happen if a machine administrator or a
local resource manager kills the processes for any reason, or
even also if the machine is shut down. The second type was
causing a failure in the Grid service for job execution (the
processes that control the worker) by killing it at run time.
This may also happen in a similar scenario as the first type
of failure. The third type pretends to simulate a performance
degradation in a machine. We achieved this by changing the
simulation that must be done by a longer one, thus making
execution time bigger than expected. The last type of failure
is to stop the job execution Grid service in order to make
new requests to the machine fail. These failures have been
implemented with scripts that are submitted at the same time
we submit the application, but keep slept until the moment they
rise a failure. We have focused the failures in the job execution
service because it controls also the job transfer service. Any
failures in file transfers would be detected and notified by
the job execution service, so, they are already covered by the
middleware.

As the test case is big enough to do it, we have distributed
the types of failures defined in different days: first day one
machine fails by killing the workers, second day another
machine fails by killing the job execution service, the third
day we simulated performance degradations, and a fourth day
we stopped the job execution service. The first and the second
day we caused an error every 4 hours, rising 6 failures per day.
The third day we changed the simulator every 4 hours for a
time period of 2 hours (4 failures per day). And the fourth day
we have enabled or disabled the job submission service every
2 hours, letting this service half of the time avaiable. It is also
important to mention that we have set the soft timeout to 1.05
and the hard timeout to 1.10 of the estimated execution time,
in order to lose the minimum time to detect a failure. We can
see a summary of the failures design in table II.

In the previous section we have described the mechanism
of dropping machines from the computation when problems
arise. If we cause failures, a machine can be dropped from the
computation, but if all the machines in our Grid are dropped,
the execution will have to stop. In order to avoid this we have
submitted the master process with a script that reads again the
configuration file after a machine drop is expected, This will
add again to the computation the machines that where dropped
before.

The results of the execution are described in table III. The



TABLE III
RESULTS

Machine Completed Failed Jobs per Day Drops

bscgrid01 190 26 42, 46, 48, 24, 40, 30 7

bscgrid02 255 12 33, 48, 48, 48, 48, 30 3

bscgrid03 255 12 48, 33, 48, 48, 48, 30 3

bscgrid04 260 8 48, 48, 38, 48, 48, 30 2

total execution time has been 5 days 15 hours 47 mimutes and
39 seconds. A first thing to highlight is that the ideal number
of jobs per day executed in a machine is 48. When no errors
are introduced, all the machines but bscgrid01 accomplish this
objective. Looking at the execution logs, we can see that in
bscgrid01 executions we have had hard timeouts for some
running tasks due to performance degradation. This is caused
because our soft and hard timeouts are very narrow to the real
execution time, and the usage of bscgrid01 is higher compared
to the rest of bscgrid machines (it has usually more people
working in it than the rest). This has caused 16 extra retries
and 2 extra drops which were not initially planned. We could
think that 16 errors should cause 4 drops, because a machine
is only retried 3 times before dropping it. This behavior is
explained because when the configuration file is read again
the retry counter for a machine is set to 0, causing that we
only have an extra drop if 4 errors occur close in time (this
happens for bscgrid01 the first and the fifth day).

Because of the overhead of the middleware and file trans-
fers, the last 2 tasks in a day finish their execution in the
next day of the computation. We have added them to the day
where they started for simplicity when trying to understand the
results. We can see that in bscgrid02 (the machine failing the
first day), there have been 12 tasks that have been resubmitted.
The failure is detected when the soft timeout is reached and
the runtime starts asking about the status of the task. As
the contact cannot be established, the task is resubmitted
immediately. Once 4 tasks fail, the machine is dropped from
the computation, having a total of 3 drops for bscgrid02 (as
we recover it once is dropped). In bscgrid03 (second day of
failures) we have a similar scenario: 12 tasks resubmitted and
causing 3 drops of machine. Anyway, in this case the errors
are detected earlier: once the worker is killed, the middleware
sends a notification to the runtime and resubmits the job
immediately. The performance degradation in bscgrid04 makes
the task to reach the hard timeout: the runtime kills the running
task, and resubmits it. The test shows that 8 tasks had this
problem, and the machine has been dropped 2 times. When
stopping the job execution service in bscgrid01 the fourth day,
the failure is detected when a new job is going to be submitted.
The runtime tries to submit 10 jobs that fail when the service
is not available (causing 5 drops of the machine). The errors
detected in previous days and the two extra drops have been
explained before.

The total execution time was expected to be 5.25 hours
slower, as we have caused in purpose failures for 42 jobs

during the first 4 days. In the end, the execution has been
delayed approximatedly 15.5 hours. This is due not only to
bscgrid01 unexpected failures (16), but also to a non suitable
drop of machines for this particular configuration. Except for
the job submission service failure, in the rest of cases the drop
is caused when a fourth task needs to be resubmitted, thus in
every drop we have 1 running task instead of the two possible.
This makes the jobs per day value decrease in one job in these
drop cases. Also the delays in re-adding machines that have
been dropped add more time to the total. It is important to
mention that despite all the failures registered during the whole
execution (a total of 58), the application finished successfully
and the results were correct.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have seen how a well-known Fault Toler-
ance mechanism (retry) can be added to a Grid programming
tool in order to overcome the possible failures which may arise
during the execution of an application, thus adding forward
recovery strategies to the previous backward recovery strategy
available (the checkpoint mechanism). We have discussed
how automatic drop of machines can help to skip permanent
hardware failures. We also have implemented timeout and retry
mechanisms for tasks in order to detect and solve any kind of
failures (not only software, but also hardware) while a job
is running in a remote machine. The checkpoint mechanism
has been improved in order to increase its reliability, and the
postprocess time needed when a GRID superscalar application
finishes has been reduced. The retry mechanism has been also
focused to the possible transient failures in the master machine
whenever using system calls, or other situations which previ-
ously made the master to stop. We have presented experimental
results which allow us to confirm that our mechanisms work
correctly in a simulated faulty environment. More precisely,
an algorithm that was planned to run ideally in 5 days in the
Grid has been run half day slower, but dealing and overcoming
all the errors detected during the execution. In addition, some
of these errors appeared spontaneously, without being initially
planned.

We believe that this work is a good step towards achieving
Fault Tolerance in GRID superscalar. However, it is clear that
more work must be done in the master part of the system to
avoid having a single point of failure. We plan to implement
mechanisms similar to the one described in [10], to be able to
replicate the master, and control the master behavior with op-
eration logs. We need also to investigate the possible overhead
of implementing physical software redundancy (submitting
several times the same task at the same moment), as well
as the benefits obtained.

ACKNOWLEDGMENT

This work has been partially supported by the Core-
GRID Network of Excellence (contract IST-2002-004265) and
the Ministry of Science and Technology of Spain (contract
TIN2007-60625).



REFERENCES

[1] M. Hecht, J. Agron. A distributed fault-tolerant architecture for nuclear
reactor and other critical process control applications. The Twenty-First
Annual International Symposium on Fault-Tolerant Computing, June 25-
27, 1991, Montreal, Canada.

[2] D. Britxe, P. Traverse. AIRBUS A320/A330/A340 Electrical Flight Con-
trols. A Family of Fault-Tolerant Systems The Twenty-Third International
Symposium on Fault-Tolerant Computing, 22-24 Jun 1993.

[3] M. Merideth, A.K. Iyengar, T.A. Mikalsen, S. Tai, I.M. Rouvellou,
P. Narasimhan. Thema: Byzantine-Fault-Tolerant Middleware for Web-
Service Applications. SRDS 2005 - 24th IEEE Symposium on Reliable
Distributed Systems. IEEE, June 2005.

[4] K. Limaye, B. Leangsuksun, Z. Greenwood, S.L. Scott, C. Engelmann,
R. Libby, K. Chanchio. Job-Site Level Fault Tolerance for Cluster and
Grid environments. IEEE International Conference on Cluster Computing
(Cluster 2005) Boston, Massachusetts, USA, September 27 - 30, 2005.

[5] R. M. Badia, J. Labarta, R. Sirvent, J. M. Pérez, J. M. Cela, R. Grima.
Programming Grid Applications with GRID Superscalar. Journal of Grid
Computing, 1(2):151-170, 2003.

[6] R. Raman, M. Livny, M. Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. Proceedings of the Sev-
enth IEEE International Symposium on High Performance Distributed
Computing, July 28-31, 1998, Chicago, IL.

[7] I. Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
Int. Journal of Supercomputer Applications, 11(2):115-128, 1997.

[8] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, S. Matsuoka. Ninf-G:
A Reference Implementation of RPC-based Programming Middleware for
Grid Computing. Journal of Grid Computing, 1(1):41-51, 2003.

[9] The home of the Checkpointing Packages. http://checkpointing.org.
[10] S. Ghemawat, H. Gobioff, S. Leung. The Google File System. Proceed-

ings of the nineteenth ACM symposium on Operating systems principles.
pp 29 - 43. 2003. Bolton Landing, NY, USA.


