
ELMFIRE. Installation guide and performance analysis

Miquel Català
Alejandro Soba

Barcelona Supercomputing Center

Technical Report TR/CASE-08-2

Jun 2008

1

ELMFIRE. Installation guide and performance analysis

Miquel Català1 and Alejandro Soba1

1 Computer Application and Science Engineering, Barcelona Supercomputing Center,
Edifici Nexus, Campus Nord UPC, Gran Capità 2-4, 08034 Barcelona, Spain.

E-mail: miquel.catala@bsc.es, Web page: http://www.bsc.es/plantillaE.php?cat id=473

Abstract. In this report we present the necessary steps to install and run the code ELMFIRE into
MareNostrum. Several profiling analysis and performance test were realized in order to prove the code
behaviour. We report some code’s difficulties found in our architecture.

Key words. EUFORIA, ELMFIRE code, installation guide, profiling

1. Introduction

ELMFIRE is a gyrokinetic particle simulation (PIC) code for plasmas in toroidal geometry. The code
has been built to study the development of instabilities in a quasineutral plasma, and its influence
in the transport coefficients. It is single-threaded and mainly Fortran 90 code, with some auxiliar C
functions.

In order to do that the code calculated the dynamics of a big number (108) of markers (each
representing about 1010 actual plasma particles) in a self-consistent electromagnetic field. Plasma
particles are electrically charged and both create and suffer the electromagnetic field.

The computational scheme of the code can be summarized in the following simplificated steps:

1. Particle initialization
2. Particle movement in existing E,B fields.
3. Binary collisions of nearby particles.
4. Calculation of new E field (current model assumes fixed B).
5. Implicit corrections to calculated movement from new E field.
6. Diagnostics
7. Goto 2 until t = t end

Sections 1), 2), 3), 5) work with perfect parallelization, since they work on local variables. The only
interaction between particles in different processors happens through the globally created E field.

Section 4) and 6) requires collective calls for joining the sparse matrix and right hand side of the
discretized Poisson equation for calculating the electrostatic potential from current (and implicitely
estimated) particle positions. The code has a restart system based on optimized MPI-IO, that allows
for long runs to be splitted into shorter sub-runs adaptable to the queuetime available ([1, 2]).

The code was analyzed in MURSKA. For the scaling results in louhi a production test run has been
used. However, it is impossible to find a suitable run that is appropiate for a range of processors 16-256.
Processor number is selected so that the heaviest task (particle motion) is calculated at a reasonable
rate. Normally that would mean keeping the number of particles per processor in the interval (0.7,
2.0)x 106.

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

MIQUEL CATAL AND ALEJANDRO SOBA 2

2. Code compilation

2.1. Source code

Code is a set of sixty FORTRAN files and three C files. Moreover there are twelve header FORTRAN
files. Although the code is written primarily in FORTRAN77, an slow but on-going process is to
develop and port the code to FORTRAN90.

2.2. Libraries

The libraries which are used (or may be used) in the code are MPI, BLACS, PESSL, IMSL, and
optionally NAG. PESSL and NAG are used only for solving the large linear system which arises from
the discretization of the field equations for the electric field. Also the IBM MASS library is used to
expedite the calculation of transcendental functions.

2.3. Makefile

The makefile are composed by three files. The main one is called makefilefile contains general
information of the compilation, precompilation and link process. Beside that contains the calls to
the other two makefile’s components and the name of the user election work directory in the WRKDIR
variable.

The second one is called xtras/makefile.common and is a switch for the architecture specific third
file, which in our case is called xtras/makefile.MareNostrum. It defines the compilers for both C and
FORTRAN languages and their flags. Here there are defined the mathematical libraries.

3. Input data

Input file name might always be labeled icri.inp . This file includes all relevant input parameters,
detailed in README file (section 2.4).

An icri.inp example is distributed with the source code, that allows a first execution to check if
the code is well compiled and installed.

For more exhaustive testing proposes we use two input file used to run the code in the MURSKA
cluster in order to check performance ([3]).

4. Execution

To launch elmfire the only necessary command is the binary without parameters. The input file
icri.inp need to exist in the same directory.

Here we show the above mentioned test, the small one (1) and the big one (2), and their behaviour
when they are run.

4.1. Found problems

The first elmfire’s version installed (version 10) in Mare Nostrum generates a segmentation fault after
two or three simulation time steps.

Last version (version 11) is able to run due to a source code’s modification realized by one of the
authors∗.

∗Fco Ogando. fogando@ind.uned.es

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

ELMFIRE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

2561286432168

T
im

e
(s

)

number of processors

ELMFIRE small test: Timing
27788

14046

7089

4332

1869
934

Total timing
Loop 600

Init particles

Figure 1. Elmfire: small test

5. Profiling

Last version of code was unable to be instrumented. It is possible to add the -pg flags to build the
binary but the new execution flows ends up to a segmentation fault.

We believe that the code needs another source modification in order to run the instrumented version.

5.1. Small test

The small test uses a test case run by Murska using a range of processors between 8 and 64 for a
measure of scalability of the code. In MareNostrum we extended this range of analysis up to 256
processors succefully. In Figure 1 we show the total timing, the timing took by the loop labeled 600
and the init particles part of the code (the last two are the most significant of the execution).

Table 1. Test: small. Number of processors: 8.

Estimated matrixMu = 42.00
Block Size = 36000
Tree Size = 1512000
This run used 8925017863 random numbers.

WALL & CPU TIMES.
=================

Total: 27719.131 27715.430
Init Particles: 5679.830 5679.860

Loop 600: 20749.967 20750.068
Loop 1600: 1120.482 1120.516

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

MIQUEL CATAL AND ALEJANDRO SOBA 4

Matrix inversion: 45.852 45.834
Data transfer + AV: 16.281 13.756
Particle redistrib: 0.000 0.000

Table 2. Test: small. Number of processors: 16.

Estimated matrixMu = 42.00
Block Size = 18000
Tree Size = 756000
This run used 8924990580 random numbers.

WALL & CPU TIMES.
=================

Total: 14044.500 14043.730
Init Particles: 2861.900 2861.900

Loop 600: 10500.968 10500.953
Loop 1600: 566.450 566.443

Matrix inversion: 36.579 36.580
Data transfer + AV: 22.372 21.782
Particle redistrib: 0.000 0.000

Table 3. Test: small. Number of processors: 32.

Estimated matrixMu = 42.00
Block Size = 9000
Tree Size = 378000
This run used 8924919319 random numbers.

WALL & CPU TIMES.
=================

Total: 7104.780 7103.980
Init Particles: 1444.850 1444.880

Loop 600: 5294.459 5294.461
Loop 1600: 286.251 286.209

Matrix inversion: 20.850 20.881
Data transfer + AV: 26.679 26.089
Particle redistrib: 0.000 0.000

Table 4. Test: small. Number of processors: 64.

Estimated matrixMu = 42.00
Block Size = 4500
Tree Size = 189000
This run used 8924765244 random numbers.

WALL & CPU TIMES.
=================

Total: 3596.600 3595.950
Init Particles: 708.060 708.070

Loop 600: 2655.880 2655.819
Loop 1600: 144.180 144.200

Matrix inversion: 12.130 12.130
Data transfer + AV: 57.081 56.559
Particle redistrib: 0.000 0.000

Table 5. Test: small. Number of processors: 128.

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

ELMFIRE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 5

Estimated matrixMu = 42.00
Block Size = 2250
Tree Size = 94500
This run used 8924591955 random numbers.

WALL & CPU TIMES.
=================

Total: 1844.300 1839.570
Init Particles: 378.140 378.150

Loop 600: 1334.940 1334.880
Loop 1600: 73.080 73.100

Matrix inversion: 6.590 6.570
Data transfer + AV: 36.440 33.850
Particle redistrib: 0.000 0.000

Table 6. Test: small. Number of processors: 256.

Estimated matrixMu = 42.00
Block Size = 1125
Tree Size = 47250
This run used 8924276076 random numbers.

WALL & CPU TIMES.
=================

Total: 934.990 931.670
Init Particles: 188.980 188.980

Loop 600: 663.930 663.890
Loop 1600: 36.530 36.530

Matrix inversion: 2.890 2.910
Data transfer + AV: 31.060 29.120
Particle redistrib: 0.000 0.000

5.2. Big test

The big test uses a test case run by Murska using a range of processors between 64 and 256 for a
measure of scalability of the code. In MareNostrum we extended this range of analysis up to 1024
processors succefully. In Figure 2 we show the total timing, the timing took by the loop labeled 600
and the init particles part of the code (the last two are the most significant of the execution).

Table 7. Test: big. Number of processors: 64.

Estimated matrixMu = 42.00
Block Size = 8000
Tree Size = 5376000

WALL & CPU TIMES.
=================

Total: 20620.961 20620.820
Init Particles: 2347.350 2347.340

Loop 600: 17141.857 17141.664
Loop 1600: 930.756 930.709

Matrix inversion: 38.740 38.717
Data transfer + AV: 73.299 72.590
Particle redistrib: 0.000 0.000

Table 8. Test: big. Number of processors: 128.

Estimated matrixMu = 42.00
Block Size = 4000

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

MIQUEL CATAL AND ALEJANDRO SOBA 6

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

102451225612864

T
im

e
(s

)

number of processors

ELMFIRE big test: Timing

20620

10426

5253

2712

1519

Total timing
Loop 600

Init particles

Figure 2. Elmfire: big test

Tree Size = 2688000

WALL & CPU TIMES.
=================

Total: 10426.430 10423.890
Init Particles: 1198.040 1198.050

Loop 600: 8634.258 8634.232
Loop 1600: 471.479 471.509

Matrix inversion: 15.851 15.842
Data transfer + AV: 54.577 53.896
Particle redistrib: 0.000 0.000

Table 9. Test: big. Number of processors: 256.

Estimated matrixMu = 42.00
Block Size = 2000
Tree Size = 1344000
This run used 55434770311 random numbers.

WALL & CPU TIMES.
=================

Total: 5253.930 5251.930
Init Particles: 588.330 588.350

Loop 600: 4319.360 4319.351
Loop 1600: 233.561 233.559

Matrix inversion: 12.150 12.110

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

ELMFIRE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 7

Data transfer + AV: 67.671 67.061
Particle redistrib: 0.000 0.000

Table 10. Test: big. Number of processors: 512.

Estimated matrixMu = 42.00
Block Size = 1000
Tree Size = 672000
This run used 55434056332 random numbers.

WALL & CPU TIMES.
=================

Total: 2712.870 2705.610
Init Particles: 295.000 295.000

Loop 600: 2151.790 2151.630
Loop 1600: 117.540 117.500

Matrix inversion: 24.990 24.990
Data transfer + AV: 97.871 94.350
Particle redistrib: 0.000 0.000

Table 11. Test: big. Number of processors: 1024.

Estimated matrixMu = 42.00
Block Size = 500
Tree Size = 336000
This run used 55432750995 random numbers.

WALL & CPU TIMES.
=================

Total: 1519.050 1517.120
Init Particles: 147.640 147.640

Loop 600: 1074.840 1074.820
Loop 1600: 59.460 59.460

Matrix inversion: 67.270 67.260
Data transfer + AV: 151.640 150.440
Particle redistrib: 0.000 0.000

5.3. Paraver analysis

Paraver[4] is used to take a photo of the execution process. It collect all about hardware counters and
communication events between threads.

We show three diferent pictures of a 8 thread execution. They show that it exists few communications
between threads and all reach the group communication points together. The application is well
parallelized. Figure 3 shows the amount of time where the application is running (blue color) and
waiting for communication (orange). Figure 4 show the instuctions per cycle between events: deeper
the color greater IPC (blue is 1.50, dark green is 0.50). Figure 5 shows MFLOPS (blue is 700 and
dark green is 300)

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

MIQUEL CATAL AND ALEJANDRO SOBA 8

Figure 3. Elmfire: status of executions

Figure 4. Elmfire: instuctions per cycle

Figure 5. Elmfire: MFLOPS

5.4. Discussion

In comparison with the data obtained from other performance analysis (in a HP CP4000) the code
ELMFIRE in our architecture shows a lower performance. The CPU time consumed by our executions

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

ELMFIRE. INSTALLATION GUIDE AND PERFORMANCE ANALYSIS 9

is aproximately twice that is on the mencioned architecture. The segmentation fault errors produced
by the code when we try to use profiling FLAGS make impossible to study more deeply the reasons
of this lower behavior.

However the analysis with paraver [1], shows a good behavior parallelism and thread balance which
produces good scalability showed in figures 1, 2. Following the internal profile provided by the code,
is possible to reach the CPU time consumed by the diferents parts of the code. These results are
summarized in tables 1-11. The more time consumed part correspond to the called loop 600, a general
loop which run over all the particles of the simulation. Any improvement in the code needs starts with
a carefully study of this part of the code.

6. Conclusions

Proves realized with ELMFIRE shows a slower performance than the data obtained from the knower
analysis in MURSKA cluster. This situation cant be studied still now in MN because the mentioned
problems in the compilation of the code using profiling FLAGS. Besides that, scalable results were
obtained up 1024 nodes, extending the range of proves realized in the past in MURSKA cluster (up
256 processors).

In order to improve the analysis, an author’s revision of the source code, similar to the realized to
possibility our study is needed.

References

1. S.J. Janhunen, F. Ogando, J.A. Heikkinen, T.P. Kiviniemi, and S.Leerink. Collisional dynamics of er in
turbulent plasmas in toroidal geometry. Nuclear Fusion, 47:875–879, 2007.

2. T. Kiviniemi. Plasma Phys. Contr. Fusion. Number 43. Dover Publications, 2001.
3. Tommi Kutilainen Kaisa Riikil. Turbulence in fusion plasma. CSCnews, pages

http://www.deisa.org/applications/projects2006–2007/fullfgk.php, 2007.
4. Vincent Pillet, Jesús Labarta, Toni Cortés, and Sergi Girona. Paraver: A tool to visualize and analyze

parallel code. Transputer and occam Developments, pages 17–32, April 1995.
http://www.bsc.es/plantillaA.php?cat id=485.

Copyright c© 2008 Barcelona Supercomputing Center Technical Report: TR/CASE-08-2

