
CENTORI - Installation, Performance, and
Enhancements

Georg Huhs

Barcelona Supercomputing Center

Technical Report TR/CASE-10-1

Dec 2010

1

CENTORI - Installation, Performance, and
Enhancements

Georg Huhs1

1 Computer Application in Science & Engineering, Barcelona Supercomputing Center,
Edifici Nexus, Campus Nord UPC, c/ Gran Capità, 2-4, 08034 Barcelona, Spain.

E-mail: georg.huhs@bsc.es, Web page: http://www.bsc.es

Abstract. This report shows the proceedings for installing and running the code Centori at
MareNostrum, includes some performance analysis and describes the implementation of parallel IO
done at BSC.

Key words. Centori , installation guide, execution guide, parallel IO

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

Contents

1 Introduction 3

2 Compilation 3

2.1 Prerequisites . 3

2.2 Compiling at Mare Nostrum . 3

2.3 Generating documentation . 4

3 Running CENTORI 5

3.1 Input files . 5

3.2 Executing CENTORI . 5

4 Performance analysis 6

4.1 Computational effort depending on the number of timesteps 6

4.2 Scalability . 6

5 Implementation of parallel IO using MPI 8

5.1 Introduction . 8

5.2 Types of data . 8

5.3 Structure of data . 9

5.4 Array storage format . 9

5.5 General implementation notes . 9

5.6 Writing data . 9

5.6.1 Common data . 10

5.6.2 Profiles . 10

5.6.3 R,Z grid functions . 10

5.6.4 Planes (ψ, θ grid functions) . 10

5.6.5 Fields . 11

5.7 Reading data . 11

5.7.1 Common data . 12

5.7.2 Profiles . 12

5.7.3 R,Z grid functions . 12

5.7.4 Fields . 12

5.8 Converting the dump file . 13

6 Open issues 14

6.1 Parallel IO performance . 14

6.2 64 Bit with MPI1 . 14

6.3 64 Bit with MPI2 . 14

6.4 Using fftw . 14

6.5 Uninitialised data . 14

6.6 Program crashes . 15

A Configuration files 16

A.1 Small test . 16

2

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 3

1. Introduction

Centori is an electromagnetic turbulence simulation code for two-fluid tokamak plasma turbulence
as would be found in MAST, JET, and ITER.

This report shows the work on Centori done at BSC. It consists of three parts: porting Centori to
MareNostrum (sections 2 and 3), performance analysis (section 4), and introducing parallel IO using
MPI-IO functionality (section 5).

2. Compilation

2.1. Prerequisites

Centori does not use external libraries and follows Fortran 95 standard. Thus the only prerequisite
is a recent F95 compiler.

2.2. Compiling at Mare Nostrum

Centori is deployed as tar .gz file, which has to be extracted

ta r −xz f f i l ename . ta r . gz

into the destination folder.

There is no config-script, all configuration is done directly in makefile. In order to compile
Centori at Mare Nostrum, following lines have to be added to the makefile into the section titled
“architecture specifics ”:

Mare Nostrum − I n t e l

F90 MN = mpif90
FFLAGS MN = −q32 −q s u f f i x=cpp=f90 −O3 −qtune=ppc970 −qarch=ppc970 \

−qcache=auto −I / gp f s /apps/FFTW/3 .2 . 1/32/ inc lude
LFLAGS MN = −q32
i f e q (${FFTW} ,YES)

LIBS MN = −L/ gp f s /apps/FFTW/3 .2 . 1/32/ l i b − l f f tw 3
end i f

The recommended compiler option −qstrict causes problems during compilation and is not used for
this reason.

Further the variable ARCH, which selects the “architecture” to use, needs to be set:

ARCH = MN

In order to use MPI2, environment variables need to be set correctly before compiling, for example
by executing

export PATH=/gpf s /apps/MPICH2/mx/ 1 . 0 . 7 . . 2 / bin / :$PATH
export MP IMPL=anl2

The compilation is started by calling

make

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

GEORG HUHS 4

2.3. Generating documentation

Two types of documentation are provided:

• The LaTeX file centori .tex (together with some pictures) containing a description of the
mathematical background.

• An “autodoc” mechanism, that extracts information from appropriate comments in the source
code and creates a set of HTML files, one for each module and subroutine.
It is a Fortran application (autodoc.f90) which reads the data it has to process from the standard
input.

The makefile provides mechanisms for generating both by the three commands

make latex compiles the LaTeX file (only to dvi)

make autodoc compiles only autodoc.f90 and does not generate the documentation

make doc executes the above two commands and generates the documentation. It feeds autodoc

with all source files. Since LaTeX is not installed on Mare Nostrum’s login nodes, this
operation fails when using one of them. One has either to use another computer or to alter
the makefile to execute only autodoc.

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 5

3. Running CENTORI

3.1. Input files

Centori needs the following input files:

• centori . in

• grass . in

• datasets .dat

Concerning parallelisation the most interesting one is centori . in, since it contains variables
specifying the partition of the domain and thus the number of processors needed. These
variables are NX SPROC, NY SPROC, and NZ SPROC. The resulting number of processors equals
NX SPROC ∗ NY SPROC ∗ NZ SPROC.

3.2. Executing CENTORI

The executable centori .exe does not need any additional command line arguments. Only the path to
the MPI lib has to be set.

A valid execution script is:

#!/ bin /bash
@ job name = cen to r i
@ i n i t i a l d i r = .
@ output = cen to r i . out
@ error = cen to r i . err
@ mpi2 = 1
@ t o t a l t a s k s = 32
@ cpus pe r t a s k = 1
@ wa l l c l o c k l im i t = 01:00 :00

export LD LIBRARY PATH=$LD LIBRARY PATH:/ gp f s /apps/MPICH/mx/32/ l i b /
export OBJECT MODE=32

date
time srun . / c en t o r i . exe > c en t o r i . out
date

When using MPI1, the variable mpi2 and the variable LD LIBRARY PATH have to be altered:

. . .
@ mpi2 = 0
. . .
#expor t LD LIBRARY PATH=$LD LIBRARY PATH:/ gp f s /apps/MPICH/mx/64/ l i b /
. . .

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

GEORG HUHS 6

Figure 1. Simulation running time depending on the number of simulated timesteps

4. Performance analysis

The analysis shown here has been done with Centori version svn393 before any of the changes
described in chapter 5. It is based on the configuration file given in listing 1 (appendix A.1). Relevant
changes to this configuration are specified when necessary.

4.1. Computational effort depending on the number of timesteps

The computational effort scales, as one may expect, linearly, with an offset of 55 ± 5 seconds. For
details see figure 1. These simulations used 32 processors.

4.2. Scalability

As figure 2 shows, Centori scales moderately up to 128 processors. Beyond that no more speedup is
achieved. When running with higher NRGRID and NZGRID similar behaviour shows up.

To vary the number of processors used, the parameters NX SPROC, NY SPROC, and NZ SPROC were
set to the following values:

#processors NX SPROC NY SPROC NZ SPROC

1 1 1 1
16 4 2 2
32 4 4 2
64 4 4 4

128 8 4 4
256 8 8 4

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 7

Figure 2. Speedup depending on the number processors

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

GEORG HUHS 8

5. Implementation of parallel IO using MPI

5.1. Introduction

Before the introduction of parallel IO, similar output files were written by each process. The only
exception were the files written by process 0, who contained some additional information.

Writing data of all processes into collective files would have, besides the obvious effect of reducing the
number of files written and so enhancing clarity, several advantages, depending on the type of output
file.

There are three kinds of output files:

save files contain data for a warm start. With a single file the simulation can be continued with any
number of processes (suitable for the simulation). The collective save file introduced is named
save coll .

dump files contain, amongst others, data for visualisation. With a single file containing all data the
whole domain can be visualised easily. There are two collective dump files generated: dump coll
and dump coll f which contain the same data, the first one in primitive binary form, the latter
one in Fortran format.

out files are used for writing diagnostics into. Since it makes sense to keep this processor dependent
and these files are not as important as the data files, they will not be parallelised.

Every NT timesteps the output is written by generating a new save file and appending the current
time dependant data to the dump file.

Since save and dump files contain the same type of data, there is no difference between them concerning
parallelisation. Thus from now on both will often be referred to as data files.

In principle the introduced collective data files should equal files created by running the non parallel
routines with only one processor. In fact there are differences, because Fortran’s build in write
commands enclose each record with some markers, in contrast to the MPI write commands, which
write only the provided data. This is no problem for the save-files, because reading them is programmed
in a convenient way. But the dump file is read by external programs, so it has to feature exactly the
same structure as the old one. This is achieved by generating a common dump file and converting it
to the Fortran format afterwards.

5.2. Types of data

The data contained in the data files can be categorized by the number of dimensions it spans. Each
category needs different treatment.

Common data has no spatial dependency, which means that all processes posses the same data.
These are vectors containing the partitioning of the spatial axis (grid) and single values, e.g.
plasma current, total energy, ...

Profiles depend only on one dimension, which is always the ψ-direction.

R,Z grid functions depend on R and Z. This data is not split amongst the processes.

Planes are two dimensional functions depending on ψ and θ

Fields are three dimensional functions (depending on ψ, θ, and ζ), which may be scalar or vectorial.

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 9

5.3. Structure of data

Spatial data is split amongst a 3D processor grid. The data a single process holds, called local data,
consists of the core region, resulting from simply slicing the global data, and a surrounding halo, whose
data is taken from spatially adjacent regions. The resulting duplication of data needs to be taken care
of when reading and writing it.

The datastructures for handling this issue are set up in

subrout ine i n i t i a l i s e p a r a l l e l i o

The most important parameters are the local halos, read/write sizes, and read/write starts. The starts
are zero based indices specifying a position inside the global data grid.
Further the filetypes needed by the fileviews for the MPI read and write commands are defined in this
routine.

5.4. Array storage format

Arrays are stored in Fortran’s column-first order.

5.5. General implementation notes

Data is read/written either by using collective routines and individual file pointers (for planes and
fields) or non collective ones and explicit offsets (all other data). For calculating the correct offset,
two variables are used:

file pos which defines a the starting point in the file where the next read/write should start. Thus
it has to be updated after each operation. If it is handed over to a subroutine, it is their
responsibility to do the update.

disp which is the displacement of the process specific segment of the data inside the current block of
data. This is needed only when using explicit offsets

5.6. Writing data

The basic writing routine for the save file is

subrout ine w r i t e p a r a l l e l s a v e f i l e

It defines the order of the variables to write. It is also responsible for selecting the data to be written
by the main process only and keeping track of file pos .
Since the save file reflects only the data at a single point in time, there is a new save file generated at
each call of write parallel save file .

A very similar routine generates the common dump file:

subrout ine w r i t e p a r a l l e l d ump f i l e (output no)
! Arguments
in t ege r , i n t en t (in) : : output no

Its structure is similar to write parallel save file with two main differences. Firstly it has to check
which data should be written to the dump file (specified in the file datasets.dat). Secondly it also
organises the handling of time dependant output. Time independant output is written in the first
call of this routine, followed by the time dependant data, which is appended at each execution of
write parallel dump file .

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

GEORG HUHS 10

5.6.1. Common data

Common data is written by the main process only. Single values are collected into a vector, which is
written at once. Vectors are processed by a single write for each.

5.6.2. Profiles

Profiles are split amongst the processor grid x-slab. Thus it would be sufficient if only processors
that lie on one specific slab write their portion of data, but the collective MPI-IO functions are used
because they perform much better.

For writing profiles given in different formats an overloaded subroutine structure that writes a local
profile’s data into the file has been introduced:

i n t e r f a c e w r i t e p r o f i l e p a r a l l e l
module procedure w r i t e p r o f i l e p a r a l l e l s c a p r f
module procedure w r i t e p r o f i l e p a r a l l e l a r r a y

end i n t e r f a c e

subrout ine w r i t e p r o f i l e p a r a l l e l s c a p r f (f i l e h a nd l e , l o c a l p r f , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
type (s c a p r f) , i n t en t (in) : : l o c a l p r f
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

subrout ine w r i t e p r o f i l e p a r a l l e l a r r a y (f i l e h a nd l e , l o c a l p r f , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
r e a l (kind (1 . 0D0)) , dimension (0 : nps i sub) , i n t en t (in) : : l o c a l p r f
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

5.6.3. R,Z grid functions

The main process writes these two dimensional fields by a single operation.

5.6.4. Planes (ψ, θ grid functions)

A plane is split amongst a processor-grid-plane. Thus only the processes of a single processor-grid-
plane would need to perform the writing, but, as with profiles, a much better performance is achieved
when all processors use a collective MPI-IO function. The routine write plane parallel does the writing.
Its signature is:

subrout ine w r i t e p l a n e p a r a l l e l (f i l e h a nd l e , l o c a l p l n , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
r e a l (kind (1 . 0D0)) , dimension (0 : nps i sub , 0 : ntheta sub) , &

in t en t (in) : : l o c a l p l n
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 11

5.6.5. Fields

There are scalar and vectorial fields. A vector field is written by splitting it up in three scalar fields,
corresponding to the components of each vector, and writing them in sequence. This is done by the
routine

subrout ine w r i t e v e c t o r f i e l d p a r a l l e l (f i l e h a nd l e , l o c a l v e c f l d , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
type (v e c f l d) , i n t en t (in) : : l o c a l v e c f l d
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

A (global) scalar field is stored in a file as a contiguous block of data, resulting from reordering the
3D data in Fortran style. Each process writes its portion of data using a fileview, created with the
help of MPI TYPE CREATE SUBARRAY. In doing so, a process does not write all of its local data to
avoid writing overlapping data twice. Responsible for handling a scalar field is the routine

subrout ine w r i t e f i e l d p a r a l l e l (f i l e h a nd l e , l o c a l f i e l d , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
r e a l (kind (1 . 0D0)) , dimension (0 : nps i sub , 0 : ntheta sub , 0 : nzeta sub) , &

in t en t (in) : : l o c a l f i e l d
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

A specialisation for writing to the dump file is

subrout ine w r i t e f i e l d p a r a l l e l d ump (f i l e h a nd l e , l o c a l f i e l d , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
r e a l (kind (1 . 0D0)) , dimension (0 : nps i sub , 0 : ntheta sub , 0 : nzeta sub) , &

in t en t (in) : : l o c a l f i e l d
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

It differs from write field parallel by the areas of the global data it processes, since for dump files no
halo in the θ and ζ direction is written. Further the user can specify if all ζ planes shall be saved. If
not, only the first non-halo plane is written to the dump file.

The collective MPI-IO routine performs much better than its non collective counterpart (order of
magnitude 10 times faster).

5.7. Reading data

For reading from the file the same principles as for writing are used. There are two main differences:

• Data that is used by more than one processors may be broadcasted after being read by one
processor.

• The sizes and start positions differ from those for writing. Each process reads all of its local
data (including the halo) at once.

Reading concerns only the save file because the dump file is never read by Centori .

The main reading routine for the save file is

subrout ine r e a d p a r a l l e l s a v e f i l e

Of course its structure has to reflect the organisation of write parallel save file .

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

GEORG HUHS 12

5.7.1. Common data

Only process 0 reads the common data. It uses one read-command for each vector. The single values
are read as vector in one step. Afterwards the vector’s data is assigned to the appropriate variables.
Distributing these data to the processes is done in the simulation-initialisation-routines, not in the
data-reading-routine.

5.7.2. Profiles

Profiles are split amongst the processor grid x-slab, which offers two ways of reading them:

• Data is read only by processors that lie on one specific slab (selected by the lowest position in
y and z direction of the processor grid) and broadcasted along the yz-plane afterwards.

• Every process reads its data directly from the file.

Both variants are implemented, broadcasting can be selected by #define PROFILE BCAST.

For reading profiles a subroutine, that allocates a profile datastructure (type(sca prf)) and reads its
data from the file, has been introduced. Its signature is:

subrout ine r e a d p r o f i l e p a r a l l e l (f i l e h a nd l e , l o c a l p r f , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
type (s c a p r f) , i n t en t (out) : : l o c a l p r f
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

5.7.3. R,Z grid functions

Similar to common data, only process 0 needs to read this data, which will be broadcasted during the
simulation’s initialisation.

5.7.4. Fields

When dealing with fields each processor reads all of its local data from the file. The structure for
reading is very similar to writing.

Vector fields are read component-by-component into a temporary buffer, which is used for initialising
a newly created vec fld structure. This job is done by the routine

subrout ine r e a d v e c t o r f i e l d p a r a l l e l (f i l e h a nd l e , l o c a l v e c f l d , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
type (v e c f l d) , i n t en t (out) : : l o c a l v e c f l d
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

Scalar fields are dealt with the following function, which reads all local data into a buffer.

subrout ine r e a d f i e l d p a r a l l e l (f i l e h a nd l e , l o c a l f i e l d , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f i l e h a n d l e
r e a l (kind (1 . 0D0)) , dimension (0 : nps i sub , 0 : ntheta sub , 0 : nzeta sub) , &

in t en t (out) : : l o c a l f i e l d
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 13

5.8. Converting the dump file

One has to take onto account that the dump file is read by external programs, which expect it to
be written in Fortran format, produced by using Fortran’s build in write commands. They enclose
each record with specific markers, in contrast to the MPI write commands, which write exactly the
provided data - and nothing more.

The desired result is achieved by generating a collective dump file in a parallel way and converting it
afterwards. The conversion is done by one processor, reading record by record from the existing dump
file with MPI commands and writing the data to a new file using Fortran’s write command.

This approach is not the most elegant one, but it is maintainabel because of the relative small
additional effort. The usual test (see A.1) running on 32 processors and writing output only once
took 658 seconds and produced a 6.5MB collective dump file. (The size of this file was maximised
by writing all possible data to it.) Converting this dump file lasted about 0.3 seconds, which is only
about 0.05% of the total running time.

This conversion is driven by the routine

subrout ine conve r t dump f i l e (num outputs)
! Arguments
in t ege r , i n t en t (in) : : num outputs

Further there is a set of routines specialised on transferring several types of data:

subrout ine t r a n s f e r i n t (f r om f i l e , t o f i l e , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f r om f i l e , t o f i l e
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

subrout ine t r a n s f e r r e a l (f r om f i l e , t o f i l e , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f r om f i l e , t o f i l e
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

subrout ine t r a n s f e r s t r i n g (f r om f i l e , t o f i l e , num characters , t r im s t r i ng ,
f i l e p o s)

! Arguments
in t ege r , i n t en t (in) : : f r om f i l e , t o f i l e
i n t ege r , i n t en t (in) : : num characters
l o g i c a l , i n t en t (in) : : t r im s t r i n g
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

subrout ine t r a n s f e r r e a l a r r a y (f r om f i l e , t o f i l e , s i z e , f i l e p o s)
! Arguments
in t ege r , i n t en t (in) : : f r om f i l e , t o f i l e
i n t ege r , i n t en t (in) : : s i z e
i n t e g e r (kind=MPI OFFSET KIND) , i n t en t (inout) : : f i l e p o s

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

GEORG HUHS 14

6. Open issues

6.1. Parallel IO performance

Up to now the goal of parallel IO was to make a meaningful parallelisation work, thus its performance
is not tuned to the maximum.

When running (NOUT = 50) ∗ (NT = 100) steps and writing the save and dump file the whole
simulation takes 960 seconds, of which 62 seconds were used for writing the output. That gives 1.56
seconds per output. For this example all possible dump output was written, which results in a dump
file size of 166MB.

This effort is acceptable, but much higher as when using posix files for each processor. In the latter
case the same example needs 5.6 seconds of total writing time.

6.2. 64 Bit with MPI1

It is not possible to run Centori with 64 Bit and MPICH (MPI 1) on Mare Nostrum. The following
error occurs when executing:

MPI ADDRESS : Address o f l o c a t i o n given to MPI ADDRESS does not f i t in Fortran
i n t e g e r

This is a known problem. Possible solutions are to use the “MPICH 64-bit Patch” or to migrate to
MPI2, of which the latter one is recommended.

6.3. 64 Bit with MPI2

Doesn’t work, needs closer examination.

6.4. Using fftw

Using fftw has to be declared in two files. In makefile:

FFTW = YES

and in centori control .h by uncommenting the line

#de f ine hav e f f tw

But this feature seems not to be mature (many compilation problems) and is recommended to be
turned off.

6.5. Uninitialised data

Some data is not initialised when it should be written as output, for example
mean square electron density(psi).

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 15

6.6. Program crashes

Centori crashed in following situations (configurations based on the small test):

• With NRGRID=128 and NZGRID=129 and 512 processors following error occurres for each
processor:

MXMPI:FATAL−ERROR: 0 : app l i c a t i on c a l l e d MPI Abort (MPI COMM WORLD, 512) − proce s s 1

It works when increasing NRGRID and NZGRID to 257 and 256, respectively.

• Running (NOUT = 50) ∗ (NT = 100) steps on one processor. The error message is

slurmd [s03c1b10] : couldn ’ t do a s t r t o l on s t r 1(1) : Numerical r e s u l t out o f range
slurmd [s03c1b10] : couldn ’ t do a s t r t o l on s t r 2(2) : Numerical r e s u l t out o f range
[. . .]
slurmd [s03c1b10] : couldn ’ t do a s t r t o l on s t r 14(14) : Numerical r e s u l t out o f range
slurmd [s03c1b10] : couldn ’ t do a s t r t o l on s t r 515(515) : Numerical r e s u l t out o f range
slurmd [s03c1b10] : couldn ’ t do a s t r t o l on s t r 531(531) : Numerical r e s u l t out o f range
[. . .]

and so on, in total 27966 lines

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

GEORG HUHS 16

A. Configuration files

A.1. Small test

File 1. centori.in for a small test case
∗ CENTORI Globa l Input F i l e
∗∗∗ ∗∗
∗∗∗ ∗
∗∗∗∗∗ MAST standard case ∗
∗∗∗ P J Knight 15/06/2010 ∗
∗∗∗ ∗
∗∗∗ Run His tory : ∗
∗∗∗ ∗
∗∗∗ ????: Cold s t a r t : ∗
∗∗∗ ∗
∗∗∗ ∗
∗∗∗ ∗∗
$SIZES
NRGRID = 128
NZGRID = 129
RMIN = 7.5
RMAX = 200.0
ZMIN = −200.0
ZMAX = 200.0
RPMIN = 7.5
RPMAX = 145.0
ZPMIN = −150.0
ZPMAX = 150.0
$END
$CENTORI
∗ Max l eng t h =50: 12345678901234567890123456789012345678901234567890
RUN DESCRIPTION = ???? :
DUMPFORMAT = 0
DUMP ALL ZETA = 0
DT = 0.5D−9
NX SPROC = 1
NY SPROC = 1
NZ SPROC = 1
NPSI = 129
NTHETA = 65
NZETA = 33
NEQUIL = 1
NOUT = 1
NT = 1000
COLD START = 1
BREF = 0.5D4
RREF = 91 .0
PLASMA CURRENT = 1.0D6
RES GRASS INDEX = 2.0
BZERO = 0.5D4
NEZERO = 5.0D13
TEZERO = 1.5
TIZERO = 2.0
ALPHAN = 1.6
POWER E0 = 14 .0D6

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

CENTORI - INSTALLATION, PERFORMANCE, AND ENHANCEMENTS 17

ALPHAPOWE = 3.0D0
POWER I0 = 14 .0D6
ALPHA POWI = 3.0D0
PARTICLE SRC = 4.0D15
VITOR0 = 0.1
ALPHAVI = 1 .6
SRC VTOR MULT = 3.0
DENSITY FEEDBACK = 1
TARGET NE = 3.0D13
TAU SN = 1.0D−4
POSITION CONTROL = 1
RTARGET = 91.0
CHI VI = 0.50D4
CHI TE = 0.50D4
CHI TI = 0.50D4
CHI NE = 1.00D4
CHI RES = 0.05D4
RRMULT = 5.0
JSQ DMULT = 4.0
CHI CLASSICAL MULT = 0.0
NUPI MULT = 0.5
∗ IONMASS: 1.67D−24 = H, 3.34D−24 = D, 5.01D−24 = T
IONMASS = 3.34D−24
$END

Copyright c⃝ 2010 Barcelona Supercomputing Center Technical Report: TR/CASE-10-1

