
TECHNICAL REPORT 11/2008

Accelerating the parallel distributed

execution of Java HPC applications

BSC-UPC

COMPUTER SCIENCES

Enric Tejedor

Rosa M. Badia

Pere Albert



Accelerating the parallel distributed

execution of Java HPC applications

Enric Tejedor, Rosa M. Badia (BSC)
Pere Albert (IBM - i3@BSC)

November 20, 2008

Abstract

In order to speed up the execution of Java applications, JIT com-
pilers compile method bytecodes into native code at run time. Once
a method is compiled, subsequent executions of this method will run
a generated machine-dependent code, which is generally faster than
interpreting bytecodes. In addition, JIT compilers can apply several
optimizations to the code to increase the performance even further.

When parallelizing the execution of a Java application over a dis-
tributed infrastructure such a Grid, a JVM is created on each resource
node to run a part of the application. The JIT compiler of each of these
JVMs works independently from the others, thus paying the compila-
tion cost and the time to reach the peak performance in every ma-
chine. Besides, in some cases, the execution nodes are not dedicated
or not directly accessible; this prevents from maintaining a persistent
JVM in each node during all the application execution, and gives little
opportunity for the JIT compiler to perform mid-to-long term code
optimizations.

This document proposes a couple of techniques to fully benefit from
JIT optimizations when distributing the execution of Java applications.
These techniques could be integrated in COMP Superscalar, a frame-
work that allows to run user-selected parts of a Java application in a
set of distributed parallel resources.

1 Summary

This document describes the challenges of parallelizing the execution of
Java High-Performance-Computing (HPC) applications over an infrastruc-
ture like the Grid, which can be defined as a set of geographically-distributed
resources that can collaborate to execute an application. In our group, we
have developed a framework called COMP Superscalar [2] (COMPSs), which
allows the user to select computationally-intensive methods of a Java appli-
cation to be run remotely on the Grid instead of locally.

1



At execution time, COMPSs transforms the local invocations to the se-
lected methods into the creation of tasks that will be run remotely. Such
tasks are scheduled in the available Grid resources, called workers. Every
time that a task (i.e. an invocation to a selected method) must be run on
a worker resource, a new Java Virtual Machine is launched on that worker,
then the method is executed and finally the JVM is destroyed. This implies
that the worker JVMs are transient. The motivation to use this execution
model with transient JVMs is the characteristics of a Grid: in some cases,
Grid resources can’t be dedicated to hold a persistent JVM during all the
application execution, or they are not directly accessible, because they are
hidden behind a front-end node that receives the execution requests and
forwards them to a local scheduler, which decides the worker node where
the job runs.

Such execution model is well adapted to the Grid environment, but also
it imposes a significant drawback for Java application: it limits the activity
of the Just-In-Time compiler. Over the last decade, Java runtime vendors
have developed dynamic compilers, known as Just-In-Time (JIT) compilers,
e.g. the IBM Testarossa included in the IBM J9 JVM 1.5+ [4] or the Sun
HotSpot JIT compiler [5]. Their purpose is to improve the performance
of Java applications by compiling bytecodes to native code at run time,
eventually optimizing this code later, while maintaning the portability that
Java requires. The methods selected to be compiled are normally those with
the highest frequency of invocation.

In the transient JVMs execution scenario, the JIT compiler has little
opportunity to perform mid-to-long term optimizations to the task code.
In order to benefit from such optimizations in COMPSs, the JVMs should
rather be persistent: the first time that a method would be run on a host,
the JVM would be created and then reused for subsequent method execu-
tions, which would allow the JIT to keep the jitted code of a task for later
executions of the same task, and also to improve the code further.

As a response to that problem, we propose a couple of solutions. The
first one involves the utilization of selective compilation techniques. When
running an application with COMPSs, we know in advance which are the
hot spots of the application: the computationally-intensive methods that
the user has selected for execution on the Grid; thus, telling the compiler
to compile (and possibly to optimize) this set of methods could reduce the
execution time of the remote tasks. Moreover, in combination with this
first technique, we would also use caches of compiled methods that could
be shared by all the worker JVMs. The IBM J9 VM already provides the
possibility to generate caches with JIT compiled code, the AOT caches,
which can be stored as files. COMPSs would be in charge of transferring
the code cache generated by one worker to another one, whose JVM would
relocate and reuse that code to run its assigned task, thus avoiding possibly
slow interpreted executions. Nevertheless, the level of optimization that



can currently be reached in an AOT method is low. In order to get better
performance, the optimization level of the AOT code should be increased.
For this reason, we are considering the possibility of creating a cache that
stores highly-optimized JITted code.

The success of this work will depend on the capability of a JIT compiler
to improve the performance of Java HPC applications with coarse-grain
tasks as hot spots. Moreover, we have to evaluate the performance of our
solution using selective compilation combined with AOT caches, as well as
the feasibility of increasing the optimization level on this caches. If necessary,
we could implement a prototype of highly-optimized code caches in the IBM
J9 JVM, or alternatively in one of the open source research JVMs available,
like the Jikes RVM [7] and its Quicksilver compiler [9].

2 Execution environment: the Grid and COMP
Superscalar

This section presents the enviroment that we target to distribute and par-
allelize the execution of Java applications: Grid infrastructures managed by
the COMP Superscalar framework.

2.1 The Grid

Grid computing [1] is a form of distributed computing that makes use of het-
erogeneous, loosely-coupled and geographically-distributed resources, such
as computational servers and storage systems, which are connected to a
network (public, private or the Internet).

From a user’s point of view, a Grid is accessed as a single virtual su-
percomputer, formed by a set of physical resources acting in concert to run
large applications composed by computationally-intensive tasks.

2.2 COMP Superscalar

COMP Superscalar [2] (COMPSs) is a framework that orchestrates the ex-
ecution of Java applications on the Grid. The two main distinctive features
of COMPSs are the programming model that it offers and its runtime.

• Programming model : let’s assume that the user has a sequential Java
application which invokes one or more methods that are potentially ex-
pensive in terms of computation. The programming model of COMPSs
allows the user to select these methods to run them on a set of Grid
resources, instead of locally. The selection is done by providing a Java
interface that declares the methods, along with some simple metadata
in the form of Java annotations. Concerning the application, the user
does not have to modify its original sequential code at all, COMPSs



will be in charge of instrumenting it and running the invocations to
the selected methods (what we call tasks) on the distributed resources.

• Runtime: COMPSs replaces the invocations to the selected methods
by invocations to its runtime. When the application is running, for
each call to a selected method, a task is created. The runtime of
COMPSs discovers the dependencies between tasks, and with that
information it builds a task dependency graph. The tasks of this graph
are scheduled for execution on the Grid resources, trying to exploit the
parallelism exhibited by the graph as much as possible. The runtime
also manages the transfer of the input files of a task to the destination
resource, the remote execution of the task and the collection of results
at the end of the application.

Figure 1: Programming model and runtime operation of COMP Superscalar

The current task execution model of COMPSs is based on a transient
workers paradigm: whenever the runtime decides to run a given task in a
remote Grid resource (what is called a worker), a new Java Virtual Machine



is launched on that worker, then the corresponding method is executed and
finally the JVM is destroyed. This happens for each task, which implies that
no persistent JVM is kept in the workers between task executions.

3 Problem: the influence of the JIT compiler

When a sequential Java application is run on a single resource with a unique
JVM, the JIT compiler performs an analysis to detect the hot spots, selects
methods for compilation and applies optimizations to the code if convenient.

The fact of distributing the execution of a Java application over N dif-
ferent resources implies having N independent JVMs that run a part of
the application. Each of the JITs, therefore, perform a number of compi-
lations/optimizations in its part of the code, possibly repeating work that
other JITs have already done. Even worse, if no persistent JVM can be
kept in the resources, JVMs are created and destroyed all the time dur-
ing the execution of the application, thus limiting the operation of the JIT
compilers.

The problem described above arises when COMPSs distributes the tasks
over the Grid resources. Since we are in a transient JVM scenario, the
executed methods will never be optimised at the level that they could be.
Even if a JIT compiler produces a jitted version of a task method, when the
method finishes the JVM is terminated, and for that reason the next task
which is run on the same node will not have this jitted code available. The
worst case happens when the JIT does not compile the task method before
its execution and consequently the bytecode of the method is interpreted;
this interpreted execution can be significantly slower than the one of a jitted
method, and it will repeat for every execution of the task.

Note the contrast between the distributed execution and a sequential
execution of the application in a single-node JVM. In the latter case, the
jitted code produced when running a method can be used in subsequent
invocations of the same method, and eventually an optimized jitted code
can be generated.

As an example of the problem, we present here some test results of
parallelizing an application with COMPSs. The application is called Matmul
and multiplies two matrices. The matrices are divided into blocks, which
are themselves smaller matrices of doubles. The tasks generated by Matmul
work with blocks stored in files. Figure 2 depicts the speedup of Matmul
depending on the number of worker processors, and considering two different
JVMs: the IBM J9 VM 1.6 and the Sun HotSpot VM 1.6 in server mode.
In both cases, the baseline is a sequential execution of Matmul in one node.

As can be seen in Figure 2, the results for the HotSpot VM in server
mode show a poor speedup. The reason is that, when running the baseline
with the Server HotSpot, the method that multiplies two matrix blocks is



Figure 2: Speedup of the Matmul application for two different VMs

progressively optimized along several runs, until it reaches a notably bet-
ter performance than that of the first run of the method. However, the
distributed execution of Matmul cannot benefit from such progressive op-
timizations, because the transient JVMs only run the method once before
they terminate.

On the contrary, the speedup obtained with the IBM VM is close to
the ideal. The reason is that, when running the baseline with this VM, the
execution time of the block multiplication method was more or less constant
from its first run to the last, i.e. the performance obtained with the first
jitted version of the method was not remarkably improved when applying
higher levels of optimizations. Therefore, in the distributed execution, all
the tasks had the same performance which was already much the best that
the JIT compiler could get.

This example illustrates how the JIT compiler optimizations can influ-
ence the execution time of an application, and how missing these optimiza-
tions when distributing the application can lead to a noticeable underper-
formance. In conclusion, if we were capable of benefiting from aggressive
optimizations also in the COMPSs worker JVMs, we would improve the ex-
ecution time of applications whose tasks can be effectively optimized. In
this sense, Section 4 proposes some solutions to address the issue.



4 Solutions

When running an application with COMPSs, we know in advance the meth-
ods whose performance is important: those that the user selects for execu-
tion on the Grid (the tasks). This means that the selected methods or any
method that is called by them, directly or indirectly, are likely to be compu-
tationally intensive. Thus, the fact of optimizing them at a high level could
represent a huge improvement in the overall performance of the application.

The next subsections describe two complementary techniques that could
contribute to run the tasks code faster, by taking more advantage of com-
piled/optimized code.

4.1 Selective compilation

The IBM J9 JVM 1.5+ provides several undocumented command-line op-
tions to influence the compilation behaviour. One of them allows to specify
a set of methods to be compiled. Optionally, two sub-arguments can be
defined:

• count : the number of times that the method will run before it is com-
piled. If count=0, the application thread is halted before the execution
of the method and then the method is jitted; after that, the applica-
tion thread restarts and runs the jitted method. If count=n and n>0,
the method is jitted asychronously with the application thread, so that
the application thread may actually interpret the method a number
of invocations before the jitted method is used (in fact, short running
applications may end before the compilation completes).

• optlevel : the optimization level at which the method is compiled. The
Testarossa JIT compiler has six levels: noOpt, cold, warm, hot, very-
Hot and scorching.

The syntax of this selective compilation option is:

java−Xjit :′ {a/b/C.methodName∗}(count = 0, optlevel = hot)′

In this example, we instruct the JIT compiler to compile any method whose
name begins with ‘methodName’, belonging to the class ‘a.b.C’, at first
touch (‘count=0’) and at optimization level ‘hot’.

With selective compilation we can ensure that a given method will never
run in interpreted mode, thus avoiding probably slow executions. Besides,
we can try to improve the performance of the method even further with the
‘optlevel’ sub-argument. However, it is worth noting that good optimizations
could require the method to run at least once, for the JIT compiler to
collect run time information about the execution. At the first invocation of a



method, most fields and invokes referenced from within that method appear
unresolved for the JIT, and this inhibits many JIT optimizations, such as
inlining. Therefore, specifying ‘count=0’ along with a high optimization
level as sub-arguments is unlikely to improve the performance very much.

Another important thing to mention is that, in COMPSs, it might not
be helpful to compile the methods which are selected by the user to be run
on the Grid. The reason is that such methods might not be themselves
the hot spot of the application, but a method which is called from them.
Since instructing the JIT to compile/optimize a method does not imply
that the methods invoked from it will be also compiled/optimized, the gain
in performance could be poor if the real computation is done inside an
invoked method. Consequently, the task methods should be profiled first to
find out where the hot spot resides, and then perform selective compilation
accordingly.

At the light of what is explained above, we can conclude that selective
compilation alone may not be completely effective. In a scenario with tran-
sient JVMs, even if we instruct the JIT to compile the task methods we
would never have fully optimized executions, because the JIT would never
have information about a previous execution to further optimize the code.
A possible solution to mitigate that problem could be to have partially-
persistent JVMs: tasks could be grouped in clusters and sent together for
execution on the same JVM. Still, in this case all the JVMs would have at
least one non-optimized execution of each task method. In this sense, the
next subsection describes a complementary technique to fully benefit of JIT
optimizations in the worker nodes.

4.2 Caches of methods

Another feature of the IBM J9 JVM is the Ahead-Of-Time (AOT) compi-
lation [3]. If the AOT compiler is enabled, a data cache containing classes
and compiled methods is generated and stored, either in memory or disk,
while the application runs. Subsequent JVMs can share this cache and load
AOT code from it without incurring the compilation overhead again.

AOT caches could be used in our case to hold the compiled code of the
task methods, but they are not completely adequate for two reasons. First,
the AOT compiler heuristically selects the methods to be compiled with
the primary goal of improving startup time, whereas our goal is to achieve
an optimized performance of the computationally intensive task methods.
Second, and more important, AOT code does not perform as well as highly-
optimized JIT code.

The reason of the AOT underperformance is that AOT code must persist
across different program executions, and consequently it is not the result
of aggressive and execution-dependent optimizations. However, and here
resides the difference, the task methods that COMPSs executes remotely are



part of the same original sequential application, even if they are run remotely
and separately, and therefore they are likely to share the same execution
parameters. For instance, when running the matrix multiply application
with COMPSs, where each task multiplies two blocks of the input matrices,
the JIT may generate an optimized code for a task especially tuned for the
concrete block size that is being used; since the block size is the same for all
the tasks, this jitted code could be reused by other JVMs, deployed in other
nodes, that run the same multiply task for another pair of blocks. On the
contrary, the AOT compiler probably would not generate a code dependent
on the block size, because AOT code is intended to be valid for different
executions with different parameters.

Taking into account all these considerations, the best solution in our
case would be to have caches of highly-optimized JITted methods. The idea
is that the code jitted by a worker JVM could be reused by another worker
JVM running in the same architecture, which would not pay the compilation
cost nor possibly the time to reach the peak performance if the shared code
is already fully optimized. In this execution model, the JIT compilers of
the different JVMs would not be independent but collaborative, and the
optimizations performed inside a JVM could spread to other JVMs in the
system.

Concerning the possible scenarios, optimized code caches could make a
great performance impact when having transient JVMs in the worker nodes.
Instead of being limited by plain compilations with no execution information
in all the nodes, now we could also have fully optimized task executions: from
the moment that a JVM finishes a task and generates a jitted code, the rest
of the tasks could take that code instead of starting from scratch all over
again. Although this technique would have less influence in the persistent
workers scenario, the cache sharing could improve the overall performance
as well since the nodes could exchange more and more optimized versions of
the task methods.

COMPSs could be in charge of mananing the caches. They could be
stored in files and COMPSs would order their transfers between different
nodes: COMPSs would be aware of where a given task code has been gener-
ated and it would send the cache to another node where the same task will
run. In fact, caches could be themselves another scheduling parameter: be-
sides considering data locality, COMPSs could also take into account cache
locality, and schedule tasks in nodes where there is already a cache that
contains the task code. Regarding the lifetime of these caches, they could
last until the application ends, or also they could persist between different
executions (in the case of code caches containing execution-dependent opti-
mizations, though, the parameters should be the the same or similar in all
the executions).



5 Key factors for the success of this work

There exist three main factors that will determine the success of this docu-
ment’s proposals. They are described in the next subsections.

5.1 Well-performing JIT compiler

First, the gain in performance of our solutions will be proportional to the
efficiency of the JIT compiler. It is of great importance to have a JIT
compiler which is capable of applying effective optimizations that reduce
the execution time of the application hot spots. Only with such a JIT
compiler, the selective compilation and the method caches will contribute
to accelerate the remote execution of tasks.

5.2 Java HPC applications

Second, the performance of the JIT compiler is particularly important in the
type of Java applications that we target: HPC applications composed of calls
to one or more coarse-grain methods with a reasonable degree of parallelism
between them. In fact, the applicability of our solutions depends on the
performance that the JIT compiler exhibits on this kind of applications.

Therefore, part of the work to do consists in finding one or more Java
HPC applications that can be run with COMP Superscalar and whose hot
spots (the task methods) can be optimized by the JIT compiler. If such
optimizations represent a considerable reduction of the execution time in a
sequential run of the application, the gain in performance obtained when
applying the proposed solutions in a distributed run will be significant.

5.3 Feasibility of increasing the optimization level in code
caches

Last, whereas the options for selective compilation already exist in the IBM
J9 VM (though not documented), at the best of our knowledge no vendor
currently implements a cache of highly-optimized jitted code.

As explained in Section 4.2, the AOT caches of the IBM J9 VM are one
of the options that we are considering, however the level of optimization that
they offer is low. Similarly, the Sun HotSpot VM 1.5+ provides a feature
called Class Data Sharing (CDS) [6], which allows to create an internal
representation of a set of classes and dump it into a file, called ‘shared
archive’. The objective of this archive, like the AOT caches, is to reduce the
startup time of Java applications.

Since none of the existing JVMs provides caches of highly-optimized
jitted methods, one possibility could be to implement a prototype of such
caches. For that purpose, we could try to increase the optimization level
of the AOT caches generated by the IBM J9 JVM. Alternatively, we could



extend a research virtual machine which comes with a JIT compiler, like
the Jikes RVM [7] or Kaffe [8], which are open source VMs for research and
education. In both cases, we would have to evaluate the effort that the
implementation of such a cache requires and the feasibility of this solution,
especially the difficulties arisen when trying to relocate a highly-optimized
jitted code generated by a certain VM into another VM. In this sense, a good
reference could be the work on the Quicksilver compiler [9], which was used
together with the Jikes RVM to generate quasi-static images of optimized
code.

6 Conclusions

This document has presented a major challenge for the execution of Java
applications in a distributed parallel infrastructure like the Grid: exploiting
the run time optimizations that the JIT compiler performs to the code. We
have seen how the heterogeneity of the Grid sometimes prevents from having
dedicated JVMs in the execution nodes, and how this can limit the activity
of the JIT compiler.

As proposed solutions, we have described the selective compilation op-
tions provided by the IBM J9 VM and the creation of method caches. These
proposals intend to steer the compilation process of all the JIT in the dis-
tributed system and make them collaborate.

Some key factors have to be evaluated before the beginning of this work,
mainly the ability of JIT compilers to improve the performance of Java HPC
applications and the feasibility of applying the proposed solutions.

References

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, 1998, ISBN 1-55860-475-
8.

[2] E. Tejedor and R. Badia, COMP Superscalar: Bringing GRID super-
scalar and GCM Together, in 8th IEEE International Symposium on
Cluster Computing and the Grid, May 2008.

[3] IBM Diagnostics Guide 6.
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

[4] V. Sundaresan, D. Maier, P. Ramarao, and M. Stoodley, Experiences
with multi-threading and dynamic class loading in a Java Just-In-Time
compiler, in CGO 06: Proceedings of the International Symposium
on Code Generation and Optimization. Washington, DC, USA: IEEE
Computer Society, 2006, pp.8797.



[5] The Java HotSpot Performance Engine Architecture, White Paper.
http://java.sun.com/products/hotspot/whitepaper.html

[6] Class Data Sharing in the Sun HotSpot VM.
http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-
sharing.html

[7] Jikes Research Virtual Machine.
http://jikesrvm.org

[8] Kaffe VM.
http://www.kaffe.org/

[9] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta, Quasi-Static
Compilation for Java, ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA00),
Minneapolis, October 2000, pp. 6682.


