HPCwire: OpenACC Starts to Gather Developer Mindshare http://www.hpcwire.com/hpcwire/2012-05-17/openacc_starts_to_gath...

HPCE

OpenACC Starts to Gather Developer Mindshare
May 17, 2012 | Michael Feldman

WIIC

PGI, Cray, and CAPS enterprise are moving quickly to get their new OpenACC-supported compilers into the hands of GPGPU
developers. At NVIDIA's GPU Technology Conference (GTC) this week, there was plenty of discussion around the new HPC
accelerator framework, and all three OpenACC compiler makers, as well as NVIDIA, were talking up the technology.

Announced at the Supercomputing Conference (SC11) last November, OpenACC is an open standard API developed by NVIDIA,
PG, Cray, and CAPS, to provide a high-level programming framework for programming accelerators like GPUs. OpenACC uses
compiler directives, which programmers insert into high-level source (e.g., C, C++ or Fortran), to tell the compiler to execute
specific pieces of the code on the accelerator hardware.

GTC conference-goers had plenty of opportunity to encounter OpenACC this week. There two OpenACC tutorials for would-be
developers, one by NVIDIA, and the other by CAPS enterprise. In addition, there were four other sessions hosted by Cray,
CAPS, and PGl throughout the week. That's not counting the numerous mentions OpenACC got during other presentations
involving GPGPU programming.

The technology is still in its infancy though. The PGl and Cray compilers are pre-production versions. CAPS first commercial
offering is just two weeks old.

The initial goal of OpenACC is to bring more developers (and codes) into GPU computing, especially those not being served by
the lower-level programming frameworks like CUDA and OpenCL. While CUDA is widely used in universities and in the technical
computing realm, and OpenCL is emerging as an open standard for parallel computing, neither is particular attractive to
commercial developers.

Most programmers are used to writing high-level code that focuses on the problem at hand, without have to worry about the
vagaries of the underlying hardware. That hardware independence is also what makes OpenACC attractive for codes that need
to span different processor architectures.

That assumes, of course, that compiler will support multiple accelerator chips. The first crop of OpenACC-enabled compilers
from PGI, CAPS and Cray only generate code for NVIDIA GPUs -- not too surprising when you consider NVIDIA's current
dominance in HPC acceleration. However all of the compiler efforts plan to widen the aperture of hardware support.

CAPS is perhaps most aggressive in this regard. According to CAPS CTO Francgois Bodin, his company plans to add OpenACC
support for AMD GPUs, x86 multicore CPUs and even the Tegra 3 microprocessor, an ARM-GPU design that will be used to
power an experimental HPC clusters at the Barcelona Supercomputing Center (BSC). Bodin also said that they have an Intel
MIC (Many Integrated Core) port of OpenACC in the pipeline. All of these compiler ports should be available later this year.

PGl is keeping its OpenACC development plans a little closer to the vest. But according to PGI compiler engineer Michael Wolfe,
they have received requests for OpenACC support for nearly every processor and co-processor used in high performance
computing. The compiler maker will undoubtedly be developing some of these over the next year.

Likewise for Cray, although its OpenACC compiler support is focused on the underlying accelerators of its own XK6
supercomputers. At this point, that's confined to NVIDIA GPUs. Cray (which also carries CAPS and PGI compilers for its
customers) has a unique OpenACC offering in that it supports those directives in PGAS languages Co-Array Fortran and Unified
Parallel C (UPC) on the XK6.

Besides its applicability to multiple hardware platforms, OpenACC is just plain easier to use when you have lots of existing code.
For one thing, OpenACC lets you attack the acceleration in steps. CUDA and OpenCL ports usually require code rewrites of at
least a sizeable chunk of the application being accelerated, using low-level APIs. With OpenACC, the programmer just has to
insert high-level directives into existing source, and this can be done iteratively, gradually putting more and more of the code
under OpenACC control. This, say, PGI's Wolfe, is "a hell of a lot more productive" than the low-level approach.

1de?2 23/05/2012 17:37



HPCwire: OpenACC Starts to Gather Developer Mindshare http://www.hpcwire.com/hpcwire/2012-05-17/openacc_starts_to_gath...

Even at the national labs and research centers, where there are computer scientists aplenty, OpenACC is starting to be
recognized as an easier path to bring acceleration to hundreds of thousands of line of legacy codes. NASA Ames is already
using PGI's compiler to speed up some of their CFD codes on one of their GPU clusters. And the upcoming deployments of multi-
petaflop GPU-based supercomputers like "Titan" at Oak Ridge National Lab, should provide a lot more opportunities for
OpenACC-based application development. Titan project director Buddy Bland is on record endorsing the technology for software
development on that machine.

As with all parallel programming though, there's no free lunch to be had. In general, the programmer is probably going to sacrifice
some runtime performance (compared to CUDA, for example) for the sake of programmer productivity. But there seems to be a
general consensus that intelligent use of directives can easily get you to within 10 or 15 percent the performance of a low-level
implementation. But as CAPS' Bodin explains, to get in that close, "you have to know what you're doing." On the other hand, as
the compiler technology matures and developers get more adept with OpenACC, the performance gap could narrow even further.

The other problemis just a lack of accelerator diversity at the moment. With Intel MIC waiting in the wings, and AMD still pretty
much a no-show with server-side GPUSs, there's no immediate need to support anything but NVIDIA's GPU architecture right now.
Worse, both Intel and AMD are backing other parallel computing frameworks that they are rolling into to their accelerator
programs: OpenMP, Cilk Plus, and TBB for Intel; OpenCL and C++ AMP for AMD.

Fortunately, it probably doesn't matter that Intel and AMD haven't hopped on the OpenACC bandwagon. PGl and CAPS can still
produce compilers targeting Intel MIC or AMD GPUSs, or whatever else comes along. And as long as there are at least two
compiler vendors offering such support, the community should be satisfied.

The end game, though, is to fold the OpenACC capabilities into OpenMP. If and when that happens, both Intel, AMD will throw
their support behind it. OpenMP has been around for 15 years and is a true industry standard.

There is currently a Working Group on Accelerators in the OpenMP consortium, which is looking at incorporating accelerator
directives into the next OpenMP release. And while those directives will be based on the OpenACC directives, they are not likely
to be adopted as is. There's a real risk that if the process gets drawn out much longer and OpenACC captures a critical mass of
users, there will end up being two directive-based accelerator standards to choose from.

Twas ever thus.

Related Articles

CAPS Entreprise Now Supports OpenACC Standard

OpenMP Announces Improvements for Multicore and Accelerators

OpenACC Support Available With New PGI Accelerator Fortran and C Compilers
NVIDIA Announces Initial Results of Directives-Based GPU Computing Program

NVIDIA Eyes Post-CUDA Era of GPU Computing

Copyright © 1994-2011 Tabor Communications, Inc. All Rights Reserved.
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications Inc. is prohibited.
Powered by Xtenit

2 de?2 23/05/2012 17:37



