
Targeting and tinkering with interaction
networks
Robert B Russell1 & Patrick Aloy2,3

Biological interaction networks have been in the scientific limelight for nearly a decade. Increasingly, the concept of network
biology and its various applications are becoming more commonplace in the community. Recent years have seen networks move
from pretty pictures with limited application to solid concepts that are increasingly used to understand the fundamentals of
biology. They are no longer merely results of postgenome analysis projects, but are now the starting point of many of the most
exciting new scientific developments. We discuss here recent progress in identifying and understanding interaction networks, new
tools that use them in predictive ways in exciting areas of biology, and how they have become the focus of many efforts to study,
design and tinker with biological systems, with applications in biomedicine, bioengineering, ecology and beyond.

Before any attempt to study, perturb or redesign networks, it is
important to understand their history and limitations. To this end,
protein-protein interaction networks are a good representative, as they
have been the subject of intense focus, and so far they contain the
most data. Like the first results from genome sequencing projects1,
interaction networks available now should be considered as partial
drafts of the complete story. Just as it is naı̈ve to think that a partial set
of expressed sequence tags constitutes enough to understand the
complete genome of an organism, it is also naı̈ve to think that a
single high-throughput yeast two-hybrid screen of a proteome is
enough to understand the complete interactome. Indeed, the interac-
tion network that makes up an organism is possibly more complex
than the genome that underlies it, given that it is the ultimate
expression of the genome and is much more subject to temporal or
environmental conditions than the underlying genomic recipe.

The two workhorses of protein interaction discovery are the two-
hybrid system2 and affinity purification or pull-down approaches3, in
their many flavors (for example, see refs. 4,5). Their popularity can be
attributed to a coupling of straightforward genetic manipulations with
relatively easy readouts to determine interactions, which makes them
readily applicable to whole proteomes or very large numbers of
proteins in a relatively short time. Both approaches have been applied
to full genomes6–9 and to significant fractions of the genomes for
major model organisms10,11 and for humans12,13. Although these first
whole-organism interactome networks are far from comprehensive,
they have revealed strengths and weaknesses of the approaches, and
they have highlighted discrepancies. A recurrent inconsistency is the

poor overlap observed between screens run by different groups on the
same organism (for example, see refs. 7,14). The many efforts devoted
to understanding this phenomenon have provided an excellent guide
to establish a general framework for the quality standards that future
experiments should follow.

The first issue to consider when comparing high-throughput
interaction discovery experiments is the completeness of the screens.
Terms such as ‘comprehensive’ or ‘genome-wide’ in the titles of large-
scale studies can be somewhat misleading, and in fact the true
coverage of both the genome and the interactome is often rather
limited. Even those experiments that have targeted all open reading
frames (ORFs) in an organism have shown ratios of homologous
recombination lower than 85%, and of these only about 60% of the
fusion proteins were successfully expressed8, meaning that only about
half of the total number of gene products are available for testing at
the beginning of each screen. Private and public initiatives have
already started to unify and provide collections of the ORFs from
several model organisms in order to reduce the impact of this
limitation (see refs. 15,16), and as a result the most recent studies in
yeast cover about 80% of the genes17.

Coverage of the interaction space is a different matter. Historically,
the low overlap between individual experiments was attributed to a
high number of false positives and false negatives in the screens14. For
false positives, or interactions considered to be wrong, careful analyses
identified the sources of most systematic errors, including self-
activating baits in two-hybrid screens and ‘‘sticky’’ proteins in affinity
purifications. The community is now aware of these effects, and there
are now strategies to deal with them, such as regular auto-activation
assays in yeast two-hybrid screens18, probabilistic treatment of high-
throughput affinity purification data8 or new purification tags that
permit more thorough washes to eliminate nonspecific interaction
partners19. As a result the number of false interactions reported in
the ongoing experiments is dropping20. An important point, however,
is that most initiatives to chart the interactome are focused on
the discovery of all interactions between macromolecules that arePublished online 20 October 2008; doi:10.1038/nchembio.119
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biophysically possible, and not necessarily those that occur in biology.
This is particularly relevant for the yeast two-hybrid system, where one
can test interactions between proteins that might never see each other
under physiological conditions because of different times of expres-
sion, different subcellular localizations or low copy numbers. The
possibility of purely biophysical interactions raises a key issue about
what constitutes a false positive: namely, whether biophysically real
but nonphysiological interactions are false. The space of putative
physiological conditions is clearly vast, and certain interactions only
observed in vitro might yet occur under some not-yet-observed
physiological state. Indeed, it has been proposed that some of such
interactions might increase the robustness of cellular circuits acting as
backups in the event of protein failure21.

There have also been investigations to identify why large-scale
studies miss many already known interactions (that is, false negatives).
One possible explanation is that some proteins are inherently under-
represented in all large-scale screens22, mainly owing to their biolo-
gical properties. For instance, membrane and extracellular proteins
often do not behave well in experiments relying on cytosolic or
nuclear reporters, and many proteins aggregate when overexpressed.
To address this, new methods are emerging to detect low-affinity
interactions between receptors and ligands23 or to test associations
involving integral membrane proteins24. Current techniques are also
not well suited to detect transient interactions or those that depend on
post-translational modifications such as phosphorylation, but new
strategies are also being developed to address this25,26. Recent research
shows that many biological processes are mediated by ubiquitination,
phosphorylation or other post-translational modification events, thus
making it critical for new technical developments in interaction
discovery to consider them. This unfortunately means a move from
simple, easy-to-handle model organisms (for example, yeast) to more
complex systems that permit proteins of interest to behave as they
would under physiological conditions.

Assay sensitivity is also an issue. Not all methods are equally good at
detecting all interactions. For instance, although the two main
techniques above cover a wide range of affinities, the two-hybrid
system is generally better at identifying weaker, more transient binary
interactions, whereas the pull-down approach is generally better at
recovering large-molecule machines with stable cores8. This observa-
tion can help explain many missing interactions from high-through-
put screens, and more importantly it has highlighted the need for
positive and negative reference (‘‘gold standard’’) sets specific for each
assay. Simply put, it is unfair to assess the accuracy of a method to
discover large dedicated molecular machines on a reference of binary
transient interactions, and vice versa. When specific benchmark sets are
applied to evaluate the different interaction discovery methods (that is,
binary interactions for two-hybrid screens and multiprotein complexes
for affinity purification screens), results from large-scale screens have a
similar quality to individual experiments, with the advantage of being
free of any social bias20. The widely held notion that high-throughput
interaction datasets are noisy and fragmentary might be a consequence
of incorrect reference sets being used to assess their quality.

Finally, one has to consider the sensitivity and specificity of the
sampling for any method applied on a large scale. Modern high-
throughput interaction discovery experiments usually test millions of
potential interactions, meaning there is a good chance that some will
be missed, even when they fall into the category that the selected assay
would normally detect. For instance, a single run of a two-hybrid
screen detects roughly 40% of the interactions suitable for the
technique, and one has to repeat the screen three times to raise this
figure to 80%, and six times to get it to close to 100% (refs. 20,27).

How complete is the interactome today?

When considering all of the above, back-of-the-envelope calculations
estimate some 20,000 binary protein-protein interactions in yeast, of
which about 3,000 are currently known20. The picture is slightly more
complete for macromolecular assemblies, where roughly 500 of an
estimated 800 total core complexes are known8, although owing to
their dynamic nature, the characterization of all their components is
still far from complete. The first datasets likely represent the ‘low-
hanging fruit’, as many missing interactions and complexes are likely
to be transient and/or dependent on physiological states not tested
under the standard laboratory conditions normally used. This com-
plete set will thus be much more difficult to uncover. With these
numbers in mind, it is then easy to rationalize the low overlap
observed—and often quoted as evidence of poor performance—
between separate screens that have each identified fewer than 5% of
the total number of interactions, and that have explored different
regions of the total interaction space.

Finally, although proteins are important functional entities in a cell,
one must not forget interactions involving other biomolecules. To this
end, many new techniques are being developed to chart interactions
involving proteins and nucleic acids28–30, as well as small molecules31

and other metabolites32, and it is very likely that the derived networks
will suffer from problems similar to those discussed for protein
networks above. The quality standards developed for protein-protein
interaction networks33 should help to advance the understanding and
interpretation of metabolic networks, where small molecules effec-
tively link proteins together34, or transcription regulatory networks,
where transcription factors affect the expression of genes and their
protein products35.

Many past efforts were aimed at showing how well high-throughput
interaction discovery experiments could reproduce small-scale biolo-
gical results, in order to convince the community of their usefulness.
This period is thankfully over, mainly owing to new benchmarks and
standardization protocols that have established the framework for
rapid developments. Interaction maps are now sufficiently reliable to
uncover, for instance, unexpected cases of functional moonlighting,
emerging properties of complex systems or the new rules that will
drive biological research in the coming years. However, ten years of
interactome research has also taught the community some tough
lessons. Anybody working in the field has experienced the backlash
from traditional molecular biologists, who are quick to condemn
genome-scale analyses owing to a few missing interactions or false
positives. As with much of science in general, people struggling to
publish papers in the best journals are often guilty of overselling, and
the resulting reactions can set back a field by years or even decades.
But despite setbacks, the community needs to continue to think big in
order to keep up with the grand promises of systems biology.
Ambitious thinking, moreover, is in step with the many technological
developments that make it possible to acquire large, diverse biological
datasets with breakneck speed.

Exploiting networks
Early analyses of biological networks revealed a much higher con-
nectivity than initially expected and established some basic principles
that appear to hold over networks of many kinds. For instance, it is
often noticed that they are ‘scale free’, meaning that most molecules in
the network have only a few connections to others, with a small
number of ‘hubs’ being highly connected, and that they are self-similar
in that any part of the network is similar, in terms of connection
statistics, to any other. Many are also ‘small world’, meaning that any
two molecules can be connected by a limited number of intermediates.
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There was an initial flurry of activity about these global, emerging
network properties36,37, almost to the point of an obsession, but so far
these rather abstract concepts have had limited application in bio-
logy38. An exception to this was the correlation noted early on between
the number of interactions that a protein makes and the tendency for
the gene encoding this protein to be lethal when deleted39, but even
this observation has come under fire in recent years20,40.

Nevertheless, the initial versions of interactome networks have
provided very useful information. In the absence of comprehensive
and accurate experimental networks, computational biology has been
able to deliver rough models of cell processes, completing the maps
with predictions and (perhaps more importantly) assessing the
reliability of some others (see ref. 41 for a review). Probabilistic
Bayesian network models (see ref. 42) deserve a special mention.
Here the properties of a network are converted into a probability
expressing the likelihood that one molecule affects another. These have
many applications, and have been used, for instance, to greatly
increase the accuracy in the prediction of phosphorylation events by
treating the probability as an approximation for the proximity
between a kinase and its potential substrate26. Bayesian networks
have also been key to deciphering the first draft of the human B
lymphocyte interactome from indirect expression data, which helped
to identify deregulated interactions in specific pathologic or physio-
logic phenotypes, as well as causal lesions in several well-studied B cell
malignancies43. Combined approaches have also been successfully
used in cancer research. For instance, Pujana et al. used both predicted
interactions and experimental yeast two-hybrid screens to model the
network around BRCA1 and were able to identify novel genes
associated with higher risk of breast cancer, in the process uncovering
a genetic link with centrosome dysfunction44. The most exciting
discovery, however, is that the current models are already accurate
enough to allow global properties of the networks to emerge. A recent
study illustrates how functional properties arising directly from the
topology of networks can be used to identify new markers for breast
cancer metastasis45. In this work, Chuang et al. applied a protein
network–based approach to show that although genes known to be
involved in breast cancer are not detected in analyses of differential
expression, they play a central role in the network topology, inter-
connecting genes that are differentially expressed in people with
metastasis. This showed that these subnetwork markers are more
reproducible than individual marker genes selected without network
information, and they are better predictors of metastatic tumors. It is
clear that as the coverage, quality and variety of protein interaction
data improve, the number of approaches exploiting emerging network
properties will grow.

The success of network biology has rapidly diffused to other areas of
biological research that have typically been more skeptical about
computational models but that are now incorporating the analyses
of networks in the planning of the experiments. The combination of
interaction network models and co-complex experiments has recently
permitted the rationalization of existing findings in proteomics as, for
instance, substrate preferences in caspases responsible for triggering
the apoptosis process: caspases do not indiscriminately cleave other
proteins, but instead target a limited number of essential multiprotein
complexes or functional pathways19.

In evolutionary biology, network models are also illuminating
certain old questions. It is reasonable to assume that interacting or
functionally related protein families should share an evolutionary
history, and thus their phylogenetic trees should be similar, although
this has been hard to detect in the past46. Recently, it has been shown
that these similarities are highly influenced by the number and type of

partners connected to each protein, and thus to exploit these simila-
rities in full, one must consider that the co-adaptation signal within a
phylogenetic tree is influenced by its network of interactions47. There
are also other interesting hypotheses with respect to speciation
processes suggesting that what makes one organism different from
another is not only their different genes (for example, chimps and
humans share roughly 98.5% of their genes), but also the specific
wiring of regulatory networks—mainly those involving transcription
factors and their target genes48. However, the field where the topolo-
gical analysis of networks has become a really hot topic is develop-
mental biology. Here, the study of gene regulatory circuits in higher
eukaryotes has revealed, for example, that the master regulators
responsible for triggering cell differentiation are usually placed at
the bottom of the networks, meaning that they are more often target
hubs than primary regulators35. Conversely, for processes that require
a faster response, such as cellular adaptation to an external change, the
master regulators do not show any preferential positioning within the
network. With great hopes put in stem cell research and its therapeutic
applications, the correct identification of the small set of transcription
factors that are able to regulate cell differentiation processes will
certainly be extremely useful.

Targeting interactions
Protein networks, particularly when arranged into biological path-
ways, encapsulate sequential biological processes, and can then suggest
rational points for intervention in order to develop therapies. There
are now many dozens of examples of rational drug-design projects
started with an eye on interactions downstream of more traditionally
targeted receptors49,50. Comparatively new targets such as protein
kinases or histone deacetylases are further into the cell than the earliest
drug targets, which tended more toward surface receptors or channels.

Numerous studies of how proteins interact have also prompted the
emergence of protein-protein interactions as targets for intervention.
Although there has traditionally been skepticism about the possibility
of targeting interactions with small molecules, much exciting recent
research suggests that this is now possible51,52. Targeting interactions
has certain advantages over more traditional targets such as enzyme
active sites. Blocking an interaction often offers a more subtle, specific
form of regulation that can avoid side effects due to off-target effects,
or to total ablation of normal enzyme activity. A certain lack of
specificity in kinase-targeting drugs, for instance, can help to explain
differences in pharmacology, such as the fact that ostensibly
similar compounds targeting BCR-ABL as treatments for leukemia
differ markedly in the kinase and nonkinase targets they bind53. This
has boosted research on allosteric inhibitors, or molecules that
might target alternative sites, many of which are sites of protein-
protein interactions54.

Abbott Laboratories already has compounds in clinical development
that inhibit interactions between several Bcl-2 family members, thus
inducing the regression of solid tumors55. Other well-known examples
of chemicals targeting an interaction include the cancer drug candidate
nutlins56 developed by Roche. These compounds act by blocking the
interaction of the tumor suppressor protein p53 with its negative
regulator MDM2 (which is overexpressed in many cancers), thus
freeing p53 to go about its normal business of mediating cell death
(Fig. 1). Chemicals have also been created to block the interaction
between the translation initiation factors eIF4E and eIF4G (ref. 57) and
to bind cytokines in order to disrupt receptor binding58,59. Discovery
of new chemicals modulating interactions, or proteins inside of net-
works, has greatly progressed in recent years owing to new technolo-
gies. Many of these exploit chemical fragments libraries, which can be
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soaked into crystals (see ref. 60) or placed on a chemical microarray
and screened for binding to a target molecule (see ref. 61).

Early skepticism about targeting interactions probably grew out of
failed attempts to target large protein interfaces. However, the recent
successes reveal a common trend—namely that most of the inter-
actions involve a relatively small surface that accommodates the
binding of a short peptide stretch in one protein by a globular domain
in another. Many of the peptides, in turn, recur in multiple proteins
according to a sequence pattern or linear motif that captures the
general requirements for peptide binding. Various methods have been
proposed to help to discover and validate new motifs (see refs. 62–64),
and these are excellent starting points for additional attempts to target
interactions rationally. Although it remains difficult to find drug-like
molecules disrupting an interaction, it is likely that new technological
developments will make this standard practice in the future.

Network-based therapeutics?
For almost a century, drug discovery was driven by the quest for magic
bullets, which act by targeting one particular and critical point or step
in a disease process and thus effect a cure with few other conse-
quences. Though many drugs have been designed rationally in the
past, the emerging picture is that drugs rarely bind specifically to a
single target, thus challenging the magic bullet concept. Most rational
drug discovery approaches focus on target-compound duets, and
despite many success stories, this limited view has led to some
expensive failures. Many promising drug candidates fail the last
(and most expensive) clinical phases because of a poor understanding
of the pathways involved in the mechanism of action, which can be
due to an inappropriate choice of animal models that missed off-
target effects in humans65. Resolving this is difficult, but to begin it is
important to extend knowledge of the disease mechanism and
consider the full biological context of a drug target and potential
off-targets for a compound. In other words, one must integrate
network biology and chemistry to identify putative secondary targets
for a given compound or explore potential downstream effects of
blocking the action of a key node in the biological network.

The first and most obvious practical application of interaction
networks to drug discovery is to make more rational target selections.

A detailed interaction map specific for a given pathology can indeed
be very valuable—it can suggest potential points of intervention that
might be selected based on (i) involvement in fewer pathways to avoid
undesired effects in other routes66 or on (ii) the topology of the
interactome, opting for those strategic points that are vital to steer
network traffic in one direction or another. Even some of the most
specific marketed drugs target proteins that are not central in the
physiological pathway relevant to the targeted disease; these drugs
produce improvements only in a limited number of symptoms65.
Interestingly, it has been noted that the wiring of interaction networks
can change from a healthy to a diseased state, and charting such
changes can also suggest excellent candidates for drug targets. For
instance, several signaling pathways in the liver show a different
functional wiring in the receptor-nucleus downstream routes when
comparing normal hepatocytes with HepG2 (human hepatocellular
liver carcinoma cell line) transformed cells, and such differences have
already caught the attention of the pharmaceutical industry67.

The accurate prediction of potential adverse reactions to com-
pounds in early stages of drug development pipelines is one of the
major challenges in the pharmaceutical industry, and network biology
can also make important contributions here (Fig. 2). For instance,
Pfizer has developed an in vitro testing strategy, based on Boolean
models of hepatocyte death-survival pathways68 and cell imaging, to
predict drug-induced liver injury. This approach has been tested on
300 chemicals, including some known to cause rare idiosyncratic liver
toxicity, with accuracies approaching 60% and with low rates of false
positives67. Elsewhere, it is now possible to predict chemical toxicities,
with increasing accuracy, by considering the proximity in a network of
the target for a given compound and target proteins for other drugs
known to cause some undesired side effects66. Most recently, it has
been found that the set of common adverse reactions that two drugs
share is an excellent descriptor for functional similarity and a means to
classify the drug space69.

Drug combinations have been used in the past to treat, for example,
simultaneous symptoms of a disease. This is often effective, but it is
also well established that many adverse reactions are known to occur
when one drug has an effect on the metabolism of another (drug-drug
interactions). An intriguing recent observation is that some combina-
tions of drugs can exert therapeutically beneficial effects that have little
to do with the effect of the compounds in isolation, which represents a
powerful tool to explore new areas of action for already marketed
compounds. CombinatoRx has tested several thousand combinations
of off-patent drugs on a number of cell-based assays70, and has
uncovered surprises such as antitumor activity in a combination of
the antipsychotic chlorpromazine with the antiprotozoal pentamidine.
This highlights the fact that one rarely understands all effects of a
compound on an organism, and much of this is down to interaction
networks. This is perfectly illustrated in a study of the synergistic
effects of these two compounds, which act at different and comple-
mentary parts of the cell cycle to halt tumor progression71. This
work has been taken further in intriguing ways. For instance, it is
possible to use the results of chemical combination screens to
infer accurate biological relationships between the targets for separate
chemicals72. There are also indications that suggest that by using a
combination of drugs to target a disease, it is possible to reduce
the dose of each individual compound, thereby avoiding many of
the undesired off-target effects73.

Another therapeutic field in which the study of networks will have a
big impact is that of the selection of the best-suited model organism to
study a given pathology. Many clinical studies fail because the under-
lying cell or animal models were poor predictors for the human
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binds to p53 (TP53) in the cell and prevents it from reacting to DNA
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disease74. The resolution of differences between established pathways
and networks across species would thus lead to an increase in the
predictive power. This is analogous to how gene prediction algorithms
increased in accuracy upon the availability of additional genomes for
organisms critically positioned in the evolutionary tree. Once networks
of interest have been characterized in human and model organisms or
cell types, it will be possible to compare them, in the same way one
currently compares protein or DNA sequences75, and select the systems
that are closest to the disease state of interest. For instance, it is well
documented that specific human brain cell cultures used to study
Parkinson’s disease are poor predictors of the final effects observed in
clinical trials76. Although several methods to assess network similarity
have been implemented77–80, the field of comparative interactomics is
still in its infancy81,82, and will clearly develop in the future.

Tinkering with systems
One way to challenge the understanding of biological systems is to
create an artificial one from scratch, applying the rules derived from
those already known. Thirty years ago, researchers used the then
limited understanding of the regulation of gene expression to start
successfully designing and constructing pieces of DNA that would
behave as predicted in living cells. This was an early demonstration
that it is not always necessary to understand everything about a
complex biological process in order to tinker with it.

A key concept in system design is modularity, or the notion that
nature duplicates and reuses both parts and design principles again
and again. It is apparent at nearly all levels, from the four bases
making up the genetic code to the hierarchical organization of
ecosystems. Proteins, the main nodes in most interaction networks,
are also composed of modules or domains, which normally encode a
specific function, such as catalytic activity or interactions with other
proteins83. Nature duplicates and reuses these domains in a wide

variety of contexts. It has also been proposed that protein complexes
are modular in nature, with proteins or groups of proteins being
reused for specific purposes8.

Cell networks are also modular, meaning that the most complex
structures can often be explained by combinations of a small number
of network motifs. For instance, feedback or feedforward loops appear
repeatedly throughout networks and are able to perform discrete
functions almost independently84. These observations suggested the
possibility to construct a toolkit of biological components for assem-
bly into circuits to create new biological functions. Synthetic biology
emerged as a combination of knowledge from diverse disciplines, such
as molecular biology, engineering and mathematical modeling, to
design and synthesize new metabolic circuits or signaling pathways
that are not encoded in the original system. The approach is extremely
powerful. Just as the development of synthetic chemistry in the
nineteenth century allowed chemists to take control of chemical
structures, the tools of synthetic biology should allow biologists to
move from the discovery and analysis of existing networks to the
de novo creation of new biological systems85. Indeed, several hundred
modules that perform discrete functions, such as genetic inverters or
protein reporters, are already available (http://parts.mit.edu/). Protein
scaffolds can already be constructed for use as a platform onto which
signaling pathways can be systematically assembled86—a technique
similar to how chemists graft substituents onto a naturally occurring
compound to alter its properties.

Although only in its infancy, synthetic biology already has a few
success stories. One of the first big impacts is the incorporation of
regulatory elements in classical metabolic engineering. Because engi-
neered metabolic networks are often assembled from unrelated
elements (even from different species) that have not been optimized
through evolution, one of the challenges is to alter the kinetics of the
individual components to make them function correctly in the new
context87. Thus, incorporating the elements necessary for a desired
metabolic route in a given organism, instead of introducing and
expressing only one enzyme in isolation, has tremendously increased
the number of successes, some of which have great socio-economic
impact. For instance, synthetic pathways have been incorporated into
yeast to significantly reduce the production costs of artemisinin, a
compound naturally produced by Artemisia annua (sweet wormwood)
that has proved to be very effective against multidrug-resistant strains
of the malaria parasite Plasmodium falciparum88. Other biotechnolo-
gical areas where current efforts at de novo design, or remodeling, of
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Figure 2 Leukemia disease network to predict undesired off-target effects.

The disease network is built from known protein-protein interactions around

genes associated with the onset of chronic (green) and acute (blue) forms of

myeloid leukemia. Some of the nodes in the disease network are either

primary or secondary targets (yellow triangles) of imatinib (Gleevec), a

blockbuster drug used to treat people with Philadelphia chromosome–

positive chronic myeloid leukemia (CML). The use of imatinib has several

associated adverse effects, the most frequent of which is myelosupression.

The primary target of imatinib, the ABL-BCR1 complex, is associated with

aberrant clonal hematopoiesis in people with CML, and myelosupression is

thus an expected therapeutic effect. Imatinib also inhibits KIT, the receptor

for SCF (stem cell factor), which in turn affects other proteins in the network

directly related to the formation of bone marrow tissue (alert signs). Proteins

related to the molecular bases of other, more occasional, adverse effects

detected in people taking imatinib (for example, nausea, diarrhea and
dyspepsia) are also found very central in the disease network, although

they are not depicted for clarity. The figure was drawn with AxPathBuilder

(http://www.anaxomics.com/). Nodes are represented by different shapes

depending on the number of interactions they make outside the depicted

network, from the 6 interactions of IL5RA to the 347 of TRAF6.
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synthetic pathways promise great steps forward are the production of
biofuels89,90 and the re-engineered oil-eating bacteria able to effectively
deal with large oil spills91 or other environmental contaminants92.
These examples might sound like some of the first promises of
biotechnological bacterial design, but the new systemic view, which
considers the entire metabolic machinery and its control mechanisms
rather than the introduction and overexpression of a foreign enzyme
in an organism, is more likely to permit the true exploitation of
bacteria as bioreactors to deliver the promised outcomes.

Synthetic biology is also a useful tool for studying the evolution of
cell networks. So far, most experiments have been devoted to deter-
mining the importance of individual network nodes by knocking
down or overexpressing a particular gene or a combination of them
(see ref. 93). However, strategies exist to reveal systematically the
importance of network edges by exploring the effect of adding new
links to a biological circuit. In one study, gene regulatory networks in
Escherichia coli were completely rewired to show surprisingly that 95%
of new topologies are tolerated, with some even conferring a fitness
advantage94. New links in such networks rarely appear to be a barrier
for evolution.

The next level of complexity for synthetic biology is the power to
tinker with multicellular systems, with an aim to build circuits able to
achieve coordinated behaviors within a cellular population. However,
these systems involve complex spatiotemporal dynamics regulated
through cell-to-cell communication and intracellular signal processing
systems, which makes them extremely challenging to model with
available technology. Nevertheless, there have been attempts to engi-
neer multicellular systems for programmed pattern formation—one
of the hallmarks of coordinated cell behavior. For instance, Basu et al.
were able to create ring-like patterns of differentiation based on

chemical gradients of acylhomoserine lactone (a signaling molecule
able to diffuse through the cell membrane) generated by ‘‘sender’’ cells
and sensed through synthetic circuits by ‘‘receiver’’ cells95 (Fig. 3).
Other attempts to achieve coordinated actions in multicellular systems
include the introduction into yeast of signaling mechanisms from
Arabidopsis thaliana, and their coordination with endogenous
responses96; and the coupling of gene and metabolic circuits in a
tunable cell-cell communication system in E. coli to create an artificial
sensor able to detect bacterial density97. Although the efficient design
and implementation of synthetic multicellular communication sys-
tems are still a fantasy, early attempts have been very useful for
improving the quantitative understanding of developmental processes
(for example, pattern formation in Drosophila melanogaster
embryos98). Moreover, they have inspired the creation of consortia
to study the feasibility of much more ambitious projects, such as the
redesign of pancreatic beta cells and programmed stem cell differ-
entiation, which will certainly become a reality in the future.

Concluding remarks
Current interaction networks are still far from complete. However,
numerous studies and new tools now mean that the community has a
deeper understanding of the fraction of the interactome that is known
and of how to complete it. It took 15 years from the development of
DNA sequencing to complete the sequencing of the first yeast
chromosome, and then nearly ten more until the human genome
was fully sequenced. By analogy, the human interactome is probably
some ten years from completion. This is a critical time for the
community to rally support and make a convincing case for the
utility of the final results.

The tools to study and perturb interaction networks are now
sufficiently mature for them to be used systematically to enhance the
understanding of biological processes, and more boldly to design new
systems and extend existing systems. In addition, the understanding of
networks themselves affords interesting opportunities to exploit them
predictively. Overall, the hype about networks has changed into
more down-to-earth (yet still exciting and innovative) applications
that will clearly drive science forward. These developments, together
with the emerging notions of network medicine, are probably what the
community needs to push hard for interactome projects, ultimately to
reap the many benefits that a more networked biology has to offer.
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