HPCQS: High Performance Computer and Quantum Simulator hybrid

Description

The aim of HPCQS is to prepare European research, industry and society for the use and federal operation of quantum computers and simulators. These are future computing technologies that are promising to overcome the most difficult computational challenges. HPCQS is developing the programming platform for the quantum simulator, which is based on the European ATOS Quantum Learning Machine (QLM), and the deep, low-latency integration into modular HPC systems basedon ParTec's European modular supercomputing concept.

A twin pilot system, developed as a prototype by the Europeancompany Pasqal, will be implemented and integrated at CEA/TGCC (France) and FZJ/JSC (Germany), both hosts of European Tier-0 HPC systems. The pre-exascale sites BSC (Spain) and CINECA (Italy) as well as ICECH (Ireland) will be connected to the TGCC and JSC via the European data infrastructure FENIX.

To achieve these goals, HPCQS brings together leading quantum and supercomputer experts from science and industry, thus creating an incubator for practical quantum HPC hybridcomputing that is unique in the world. The HPC-QS technology will be developed in a co-design process together with selected exemplary use cases from chemistry, physics, optimization and machine learning suitable for quantum HPC hybrid calculations. HPCQS fits squarely to the challenges and scope of the call by acquiring a quantum device with two times 100+ neutral atoms. HPCQS develops the connection between the classical supercomputer and the quantum simulator by deep integration in the modular supercomputing architecture and will provide cloud access and middleware for programming and execution of applications on the quantum simulator through the QLM, as well as a Jupyter-Hub platform with safe access guarantee through the European UNICORE system to its ecosystem of quantum programming facilities and application libraries.

Funding