Ocean Biogeochemistry and Climate Feedbacks
The Ocean is a key player in the climate system, buffering changes in the atmospheric composition. Changes in the ocean ... Our research line focuses on ocean biogeochemical processes and the effects on the climate system of their alteration.

Summary

Atmospheric levels of CO$_2$ and other greenhouse gases (CH$_4$ and N$_2$O) have increased substantially above preindustrial levels due to human activities. Carbon dioxide is continuously absorbed by the ocean, which acts as a major sink for CO$_2$. Carbon dioxide entering the surface ocean immediately reacts with water to form bicarbonate (HCO$_3^-$) and carbonate (CO$_3^{2-}$) ions by means of the physical and biological pump. These two pumps maintain a vertical gradient in CO$_2$ regulating the exchange of CO$_2$ between the atmosphere and the ocean. The strength of the solubility pump depends globally on the strength of the MOC, ... suggest that, the rate of growth of this sink may have slowed down producind sever feedbacks on the climate system.

Changes in CO$_2$ solubility:

CO$_2$ solubility is a function of the temperature, therefore as the ocean's temperature increases the solubility of CO$_2$ decreases and consequently the uptake of the CO$_2$ is reduced.

Changes in the ocean stratification:

Increased the sea surface temperatures (SST) and increased precipitation at high latitudes lead to an increase in the stratification of the ocean. This causes a shallower mixing layer and a reduction in the vertical exchange and transport of anthropogenic CO$_2$ to the deep ocean. The stratification reduces the supply of DIC and nutrients, which are needed for biological activity.

Changes in the marine productivity:

Warming and other environmental changes (e.g. ocean acidification) can lead to further changes in marine productivity.

Changes in the ocean circulation:

On centennial time scales the ocean carbon sink may also be affected by climate-driven changes in the ocean circulation such as the slowing down of the Thermohaline Circulation.

Using state of the art earth system model (EC-Earth) and the experience on climate prediction gained in the Climate ... and climate feedbacks research line is to study the response of the ocean in a changing climate and their feedbacks.

Objectives

To study the ocean biogeochemical impacts due to climate change and climate variability

To quantify feedbacks between ocean biogeochemistry in the climate system

To understand the impacts on the marine ecosystem due the changes of the main ocean biogeochemical cycles in a changing climate

Barcelona Supercomputing Center - Centro Nacional de Supercomputación

Source URL (retrieved on 8 gen 2020 - 04:41):

https://www.bsc.es/ca/research-development/research-areas/climate-prediction/ocean-biogeochemistry-and-climate-feedbacks