Objectives

To see the presentation please click here

Abstract: Stencil computation is an important class of algorithms used in a large variety of scientific-simulation applications, especially those arising from finite-difference solutions of differential equations representing the behavior of physical phenomenon such as heat dispersion or seismic activity. This talk provides a brief review of stencil computation and Intel® Xeon® and Xeon Phi™ processors, and it describes the YASK (Yet Another Stencil Kernel) framework that simplifies the tasks of defining stencil functions, generating high-performance code targeted for various Intel platforms, and running tuning experiments. A couple of example YASK features are explained, performance results are given, and future work is described.

Short Bio: Chuck Yount received his PhD degree in ECE from Carnegie Mellon University in Pittsburgh, Pennsylvania, USA. He is currently a Principal Engineer in the Software and Services Group at Intel Corporation. His work includes developing
analysis and optimization techniques for HPC applications on many-core products including the YASK open-source software framework for stencil-code optimization.