PATC: Performance Analysis and Tools

Objectives

The objective of this course is to learn how Paraver and Dimemas tools can be used to analyze the performance of parallel applications and to familiarize with the tools usage as well as instrumenting applications with Extrae.

Requirements

Prerequisites:
- Good knowledge of C/C++
- Basic knowledge of CUDA/OpenCL
- Basic knowledge of MPI, OpenMP

NOTE:

MIRI students interested in obtaining the Certificate of Attendance will have to submit some exercises. Further information will be provided on the first course day.

Learning Outcomes

The students who finish this course will have a basic knowledge on the usage of the BSC performance tools. They will be able to apply the same methodology to their applications, identifying potential bottlenecks and getting hints on how to improve the applications performance.
Course Convener: Judit Gimenez

Materials

INTELLECTUAL PROPERTY RIGHTS NOTICE:

• The User may only download, make and retain a copy of the materials for his/her use for non-commercial and research purposes.

• The User may not commercially use the material, unless has been granted prior written consent by the Licensor to do so; and cannot remove, obscure or modify copyright notices, text acknowledging or other means of identification or disclaimers as they appear.

• For further details, please contact BSC?CNS patc [at] bsc [dot] es

Further information

All PATC Courses at BSC do not charge fees.
PLEASE BRING YOUR OWN LAPTOP.

Recommended Accomodation:

Please follow the link for map of some local hotels.

CONTACT US for further details about MSc, PhD, Post Doc studies, exchanges and collaboration in education and training with BSC.

For further details about Postgraduate Studies in UPC - Barcelona School of Informatics (FiB), visit the website.

Sponsors:

BSC and PRACE 4IP project are funding the PATC @ BSC training events.
If you want to learn more about PRACE Project, visit the website.

Barcelona Supercomputing Center - Centro Nacional de Supercomputación